Name Role Albatross -Overall system design for floating axis wind turbines -Design and manufacturing considerations for carbon fiber reinforced materials for the wind turbines -Life cycle cost analysis J-POWER -Examination of certification processes for the large-scale floating foundation for floating axis wind turbines -Supply chain analysis and research TEPCO HD -Establishment of numerical analysis methods for large-scale turbines “K” LINE - 研究降低安装,维护和操作的成本 - 生活周期成本分析shi -me-研究大型涡轮机的设计和生产技术
本推荐做法是根据联合行业项目 (JIP) 的结果制定的。这项工作由 DNV GL 完成,并在定期项目会议和研讨会上与 JIP 参与组织的个人进行了讨论。特此感谢他们提供的重要、宝贵和建设性意见。以下组织(按字母顺序列出)参加了 JIP:Acciona、BayWa re、BlueC Engineering、Carpi Tech、Ciel & Terre International、CNR – Compagnie Nationale du Rhone、EDF - Électricité de France、EDP - Energias de Portugal、Equinor、Innosea - part of Aqualis Braemar LOC Group、Isigenere、JLD International、Mainstream Renewable Power、Makor Energy Solutions、Noria Energy、QuantSolar、RWE、Scatec、Seaflex、SolarMarine Energy、Statkraft、SunRise E&T Corporation、TNO、Total。
尽管我们已尽一切努力确保本报告所含信息来自可靠来源并经过正确分析,但 PEAK Wind 对任何错误或遗漏,或使用该信息所获得的结果概不负责。本报告中的所有信息均按“原样”提供,不保证其完整性、准确性、及时性或使用该信息所获得的结果,也不提供任何明示或暗示的保证,包括但不限于性能、适销性和特定用途适用性的保证。本文中的任何内容均不能在任何程度上取代读者的独立调查和合理的技术和商业判断。在任何情况下,PEAK Wind Group ApS、其附属公司、合作伙伴、员工或代理人均不对您或任何其他人因依赖本报告中的信息而做出的任何决定或采取的任何行动或任何间接、特殊或类似损害承担责任,即使已被告知此类损害的可能性。
详细描述了船体、龙骨、龙骨线、塔架、涡轮机和悬链线系泊系统。其中包括尺寸、质量、惯性、结构特性和操作条件。该设备的规格基于 2018-2019 年缅因大学进行的模型测试中使用的缩放版本。数值模型旨在尽可能与实验相似,以便进行有效的验证比较;确定了实验中可能存在的不确定性来源。提供了物理测试的描述,包括一些摘要响应值。规定了数值工作的预期载荷工况。这些包括平衡、自由衰减、仅风、仅波浪以及风浪组合条件。风浪环境是通过统计和测量的时间序列来定义的。
2-1:常规实验的测试目标和结构模型 .............................................................................. 13 2-2:RTHS 测试活动目标和结构模型摘要 .............................................................................. 15 2-3:FWT 常规实验的比例因子 ............................................................................................ 17 2-4:常规和 RTHS 实验的测试设置 ...................................................................................... 21 2-5:常规和 RTHS 实验中的仪器 ............................................................................................. 27 2-6:FWT 的常规和 RTHS 实验室实验摘要 ...................................................................... 31 2-7:选定的海上实验摘要 ............................................................................................................. 32 3-1:vRTHS 和数值建模测试或模拟的文献综述。 .................. 39 3-2: FWT 的 RTHS 实验总结 .............................................................................. 40 3-3: MIT/TLP 平台和 5 MW NREL 风力涡轮机结构特性 (Matha, D., 2010) 47 3-4: TLP MIT/NREL FWT 的固有频率验证(参考) ............................................................. 51 3-5: 子结构方法......................................................................................................................... 54 3-6: 气动和流体动力学载荷工况 ............................................................................................. 60 3-7: 评估标准 res
EDFR 能为其日本合作伙伴带来什么 从建设/运营和维护中吸取的经验和教训 从 PGL 的开发和建设阶段吸取的经验 技术专业知识,评估和选择最合适的技术组合(风力发电机组、浮子、锚定……) 在示范浮动风电项目上进行合作 运营和维护优化
- 迈向浮动式海上风力发电机 - 五岛浮动风力发电场有限责任公司(以下简称“五岛浮动风力发电厂”)今天宣布,五岛市海上风力发电项目的八台浮动式风力发电机组中的首台已经完工,并在日本长崎县五岛市福江港的码头堆场装载到半潜式定位驳船 1 Float Raiser 上。浮动式风力发电机组计划于 2022 年 10 月 8 日星期六从福江港出发,前往蒲岛近海开始风力涡轮机的组装工作。 1 艘用于装载陆上建造的浮动式海上风力涡轮机并以半潜式状态在海上浮动和下水的大型驳船 自 2022 年 4 月以来,该联盟一直在遵循海区专用权等的批准程序,这是安装发电基础设施的必要条件。此前,该联盟根据《促进利用海域开发利用海洋可再生能源发电设施法》获得了日本首个海上风力发电设施公开发行计划认证。该联盟将在指定区域内建设一座浮动海上风电场,目标是在 2024 年 1 月开始商业运营。
摘要。尾流效应是风电场设计和分析中的一个关键挑战。对于浮动风电场,平台在涡轮机的气动载荷下发生偏移,并受到系泊系统的约束,系泊系统的允许偏移量可能有很大变化。当考虑尾流转向时,涡轮机的侧风偏移可以抵消尾流的横向偏转。这项工作提出了一种工具,可以有效地模拟浮动风电场尾流转向和平台偏移的耦合影响。该工具依赖于频域风电场模型 RAFT 和稳态尾流模型 FLORIS。使用 FAST.Farm 进行了验证,然后将该工具应用于一个简单的双涡轮机案例研究。在比较对涡轮机功率的影响时,考虑了一系列具有增加的平台偏移和不同偏航错位角的系泊系统。探讨了对涡轮机间距和系泊系统方向的其他敏感性。结果表明,顺风涡轮机发电存在一个最不理想的观察圈宽度,该宽度随偏航错位角和涡轮机间距而变化。此外,偏航失准条件下的涡轮机偏移量会因系泊系统相对于转子平面的方向而发生显著变化,进而影响最佳失准角。这些结果凸显了在评估浮动风力发电机组的尾流转向策略时考虑浮动平台偏移量和系泊系统的重要性。
缩略词列表 BOEM 海洋能源管理局 CapEx 资本支出 CETA 清洁能源转型法案 COD 商业运营日期 FCR 固定收费率 FLORIS 稳定状态下的流量重定向和诱导 FORCE 预测海上风电能源成本降低 GCF 总容量系数 GW 吉瓦 IEA Wind 国际能源机构风能技术合作计划 km 公里 kV 千伏 kW 千瓦 LCOE 平准化能源成本 m 米 MW 兆瓦 MWh 兆瓦时 MYNN Mellor-Yamada-Nakanishi-Niino NDBC 国家数据浮标中心 NCF 净容量系数 NOAA 国家海洋和大气管理局 NOW-23 2023 年国家海上风电数据集 NREL 国家可再生能源实验室 NRWAL NREL 风能分析库 O&M 运营和维护 OpEx 运营支出 ORBIT 海上可再生能源系统平衡和安装工具 PBL 行星边界层 PNUCC 太平洋西北公用事业会议委员会 POI 点互连 RFP 征求建议书 S&I 分期和集成 WCMAC 华盛顿沿海海洋咨询委员会 WOMBAT 风电场运营和维护成本效益分析工具 YSU 延世大学
fi g u r e 3 mifish社区概况的β多样性。(a)样品重复级别的NMD图,(b)在Hellinger转换的Bray-Curtis成对差异的站点处的平均连锁聚类。采样深度表示为实心圆(10 m)或带有十字架(50 m)的开放正方形。样品以黄色为OWF或蓝色以显示参考区域。
