系统和JAVA Codon Adaptation Tool 进行密码子适配。优化后的序列由上海生工生物工程有限公司通过 BamH1 和 XhoI 酶切位点合成并克隆到来自 pGEX-6p-1 质粒(美国 Novagen)的表达载体中。将重组质粒 pGEX-6p-1-Mpro 转化的 E. coli BL21(DE3)细胞(美国 Invitrogen)在 2 L Luria-Bertani 培养基中于 37 ℃ 下生长至 OD600 达到 0.6 后,加入 0.2 mM IPTG,16 ℃ 诱导重组蛋白表达过夜。将菌体悬浮在 PBS 中,超声波破碎。离心收集上清液并与谷胱甘肽 Sepharose 4B 琼脂糖(美国 GE Healthcare)混合,4 ℃ 下孵育 3 h。然后用 PBS 清洗珠子,并加入 preScission 蛋白酶 (GE) 以切割 GST 标签。含有
塑料通过:•焚化 - 危险物质可以从燃烧的塑料中释放到空气中,包括重金属,持续的有机污染物(POP)和其他有毒化学物质。随着弹出式通过风流在我们的星球上移动时,它们很容易被运输到其起源的国家以外。•海喷 - 微型塑料漂浮在海洋顶部和海岸线周围是另一个贡献者。研究人员估计,最多可将多达136,000吨的微型塑料吹入空气中,然后每年被海上喷雾降落•城市的灰尘 - 新研究将轮胎灰尘标记为“隐身污染物”。它从汽车轮胎摩擦中进入空气。添加到轮胎中的防腐剂6ppd阻止它们分解,在吸入时对野生动植物和人类非常有毒。
摘要:大量研究表明,大多数食品和饮料中的微塑料颗粒会对人体造成危害。研究发现,微塑料会穿透保护人脑免受有害物质侵害的血脑屏障,造成严重损害,甚至导致癌细胞增殖。这项研究确定了微塑料对脑癌细胞的影响。此外,该研究还更详细地探讨了较高浓度的微塑料如何影响脑癌细胞。然而,漂浮在癌细胞上方的微塑料从未相互作用。作为一种解决方案,使用微波微塑料 (MMP) 使颗粒更小、密度更低,这样它们就不会漂浮,而是与癌细胞相互作用。结果发现,2% 的 MMP 可能支持脑癌细胞增殖,但 20% 的 MMP 可能会诱导脑癌细胞的细胞毒性。总的来说,这些发现表明少量的微塑料可以促进癌细胞生长,凸显了人们在日常生活中意识到微塑料存在的必要性。
与刚性印刷电路板 (PCB) 和柔性 PCB 相比,软电路具有更高的稳健性和更好的机械阻抗匹配性,可与更广泛的宿主表面(包括纺织品和人体软组织)匹配。然而,可拉伸电子产品开发中的一个关键挑战是使用可印刷油墨的能力,这种油墨在 > 100% 的大应变下仍能保持高电导率和稳定的走线电阻。一种有前途的方法来创建具有低机电耦合的柔软、可拉伸和可印刷电子产品,就是将微流体通道或液态金属 (LM) 液滴整合到软弹性体中。[8,9] 镓基 LM,例如共晶镓铟 (EGaIn),因其高导电性、低流体粘度和可忽略不计的毒性而特别受欢迎。[10] 然而,制造带有 LM 导体的电路通常需要大量劳动力,并且需要许多手动步骤。由于 LM 的粘度低、表面张力高且与基板的粘附性差,直接打印 LM 也具有挑战性。因此,研究人员试图提出创新技术,以打印基于 LM 的电路。在一项研究中,EGaIn 沉积在印刷的 Ag 纳米墨水上,以实现电导率提高 6 个数量级、应变耐受极限提高 20 倍以上。[11] EGaIn 还用于选择性润湿光刻图案化的铜 (Cu) 走线,以创建高性能集成电路 [12],并且还沉积在电纺弹性纤维垫上,以获得具有高导电性和可拉伸性的薄膜导体。[13] 在另一项最近的研究中,LM 和银薄片悬浮在热塑性弹性体中,并用于具有极高拉伸性 (2500%) 的摩擦电纳米发电机。 [14] 其他努力包括利用 EGaIn 液滴渗透网络,无论是印刷迹线的形式 [15,16,17] 还是由悬浮在弹性体基质中的 LM 液滴组成的橡胶复合材料。[18,19,20] 然而,这些使用 LM 液滴印刷软电子器件的方法需要额外的热、光学或机械烧结步骤,以及其他形式的后处理以诱导电导率,并且印刷适性对于与微电子集成的应用受到限制
7 高炉的原材料通过顶部的钟罩系统装入,同时预热的空气通过底部的风口吹入。空气中的氧气与热碳(焦炭)反应生成一氧化碳,一氧化碳是一种还原气体,与氧化铁反应释放铁。这使得铁自由熔化并滴落到炉床,形成一层厚厚的液态铁。与此同时,石灰石与其他杂质反应形成液态炉渣。这也会落到炉床,但由于比铁轻,所以浮在表面。随着液态铁和炉渣在炉膛中积聚,首先是炉渣,然后是熔融金属通过炉底的孔排出。这些孔被称为炉渣和铁槽。整个过程是连续的,日夜不停地进行数年,直到炉子的耐火衬里开始失效。在此阶段,将炉子“吹扫”,安装新的耐火衬里,并为炉子的另一次“活动”做好准备。
2013 年,美国缉毒局首次注意到阿片类药物芬太尼过量导致的死亡人数异常高。1 到 2019 年,每年的死亡人数惊人地增加了 12 倍:超过 36,000 人。2 芬太尼及其类似物对滥用者而言具有明显的致命性,但对旁观者而言,它们却构成了单独且独特的危险。意外过量的风险巨大,原因有很多。首先,效力:芬太尼的致死剂量仅为约 2-3 毫克,大小不超过 5-7 粒食盐。 3 第二,人体容易吸收:将芬太尼粉碎成药丸形式会产生粉尘,这些粉尘会漂浮在空气中并覆盖在物体表面,4 并且由于芬太尼可以“口服、通过鼻子或嘴巴吸入,或通过皮肤或眼睛吸收”,因此有多种途径可能意外接触。5 过量用药症状的出现仅需几分钟。
2013 年,美国缉毒局首次注意到阿片类药物芬太尼过量导致的死亡人数异常高。1 到 2019 年,每年的死亡人数惊人地增加了 12 倍:超过 36,000 人。2 芬太尼及其类似物对滥用者而言具有明显的致命性,但对旁观者而言,它们却构成了单独且独特的危险。意外过量的风险巨大,原因有很多。首先,效力:芬太尼的致死剂量仅为约 2-3 毫克,大小不超过 5-7 粒食盐。 3 第二,人体容易吸收:将芬太尼粉碎成药丸形式会产生粉尘,这些粉尘会漂浮在空气中并覆盖在物体表面,4 并且由于芬太尼可以“口服、通过鼻子或嘴巴吸入,或通过皮肤或眼睛吸收”,因此有多种途径可能意外接触。5 过量用药症状的出现仅需几分钟。
定向耦合器广泛用于光子集成电路,作为高效片上光子信号路由的基本元件。传统上,定向耦合器完全封装在该技术的波导包层材料中。在本文中,我们展示了一种紧凑的宽带定向耦合器,它完全悬浮在空气中,并在交叉状态下表现出高效的功率耦合。该耦合器是基于 IMEC 的 iSiPP50G 标准平台设计和制造的,基于水氟 (HF) 蒸汽蚀刻的后处理允许释放独立组件。实验证实了 λ = 1560 nm 时的低插入损耗 0.5 dB 和 λ = 1550 nm 时的 1 dB 带宽 35 nm。该定向耦合器体积小巧,仅为 20 µ m × 30 µ m,机械稳定性高,可作为大规模硅光子微机电系统 (MEMS) 电路的基本构建模块。© 2020 美国光学学会
水平基因转移是细菌进化的最重要驱动因素之一。传统上,通过吸收细胞外 DNA 进行转化不被认为是一种有效的基因获取方式,原因很简单,因为当细胞外 DNA 悬浮在海水等环境中时,几天内就会降解。最近,储存 DNA 的年龄跨度增加到至少 2 Ma。在这里,我们表明 Acinetobacter baylyi 可以整合吸附在常见沉积矿物上的 60 bp DNA 片段,并且转化频率与矿物表面特性成比例。我们的工作强调,古老的环境 DNA 可以促进当代细菌的进化。与可遗传的随机突变相反,细菌在压力和需求增加时获取新基因组材料的过程表明,非随机机制可能以非随机方式推动进化。
公共表演 我们的电影放映提供 25 分钟的夜空之旅,随后播放全天幕电影。这些放映由 WCU 本科生负责。以下是 Mather 天文馆目前正在放映的电影的概要。 小行星:极限任务 - 小行星:极限任务带领观众踏上史诗般的旅程,探索小行星为太空旅行提供的可能性。探索宇航员需要做些什么才能到达小行星并将其驯服以供我们使用,以及这种非凡的冒险如何造福人类。这种极端的任务最终可能会让我们学会如何保护我们的星球以及如何成功地在其他星球上居住。 宇航员 - 太空探索是人类有史以来最伟大的事业。要参与这次不可思议的旅程需要什么?要成为一名宇航员需要什么?在宇航员体内体验火箭发射。探索内太空和外太空的奇妙世界,从漂浮在国际空间站周围到在人体微观区域内移动。让我们的测试宇航员“查德”经受太空中发生的一切考验,发现太空中潜伏的危险。