特性由阵列的孔径决定。但是,由于稀疏阵列中的元素数量减少,平均旁瓣电平高于相同孔径的全采样阵列的预期值。假设主瓣幅度为 M,正如预期的那样,对于一个由 M 个标准化和完全局部化的元素组成的阵列,每个元素在主响应轴方向上贡献一个同相矢量。然而,在远离主响应轴的给定方向上,由于元素位置随机,矢量并不同相,而是表现出统计随机相位。单位矢量与随机相位相结合,产生一个均方根 (rms) 幅度为 rm 的旁瓣电平。因此,对于随机阵列,平均旁瓣与主瓣的功率比为 M/MI = 1/M (Lo, 1964, 1965)。
摘要:在对卫星海面风回收校准稳定性的常规分析期间,我们发现了从2020年中期至今的热带气氛海洋(TAO)Buoy阵列中的卫星测量和来自热带气氛海洋(TAO)Buoy阵列的风观测之间的显着偏见。经过广泛的调查,我们确定偏差并非源于卫星校准或编码误差中的异常,因为无论将这些浮标与哪种卫星与哪种卫星相提并论,似乎都是偏差。在风速观察中突然增加了约10%(0.5-0.8 m s -1),首先在2020年3月至9月之间提供的40多个Tao浮标中确定。我们的担忧与国家数据浮标中心(NDBC)的科学家共享,后者证实了我们的估计。这种突然变化的确切来源仍在研究中,但它似乎与最近服务旅行期间安装的浮标风速计的校准变化有关。到2024年,自2020年以来,目前所有目前在NDBC管理下运营的Tao浮标都得到了维修,它们都显然显然会在面向公共的浮标数据中突然增加了后服务。这种变化是令人关注的来源,因为综合卫星与商品系统的稳定性对于国际海洋观察计划至关重要。本文的目的是向研究界告知TAO阵列中这种虚假的风信号,讨论其对研究界的影响,并防止其被误解为气候变异性,影响其他观测系统的校准或影响派生的数据产品(例如海洋表面磁通)。
摘要:在海上研究以及搜索和救援操作中,建立或预测漂流物体的轨迹很重要。可以使用带有海洋动态模型的传统工具或通过人工智能模型来确定漂移对象的轨迹。从2003年12月19日至12月28日之间收集的漂流浮标数据中,研究小组采用了CNN(CORV1D)模型进行分析。分析结果表明,通过使用ADAM优化器,Huber损耗函数和256个过滤器,在隐藏层中,该模型性能的特征参数被确定为RMSE = 0.04004,MAE = 0.032304度,R²= 98%。使用SGD优化器和均方误差(MSE)损耗函数时,与先前情况相比,RMSE和MAE值最多降低了四倍,而R²值则在隐藏层中有64个过滤器达到99.9%。当隐藏层中的过滤器数增加到128时,CNN(CORV1D)模型的性能提高了20%,RMSE = 0.007863DEG,MAE = 0.006653DEG。使用CNN(Conv1D)模型使用SGD优化器预测漂移浮标的轨迹时,R²值和MSE损耗函数接近约100%,这表明该模型适用于预测漂流浮标轨迹的输入数据。将模型隐藏层中的过滤器数量从128增加到256并没有改变模型的预测性能,这表明该情况的最佳过滤器数为128。未来的工作应继续使用较大的输入数据集进行漂移数据分析。但是,这项研究中获得的RMSE结果仍然相对较大(0.87 km),这可能是由于输入数据有限。
摘要:本文介绍了一个新颖,创新的开放多域平台,用于预警,以防止水库和水库中的不良事件,该平台可以测量温度,pH,氧化还原,电导率,浊度,叶绿素和植物蛋白。这些参数是蓝细菌开花的关键指标。此平台允许对湖泊和河流上重要位置的远程和分布式监视。电台的设计使两个有线传感器都可以直接连接到站点,并从与车站建筑物通信的本地分散测量点进行了无线数据收集。数据聚合系统是开放的,并且该站的技术解决方案是通用的,这意味着它可以使用不同的化学和生物学参数使用不同的传感器,例如,从市场和行业标准来看,例如《水框架指令》。该平台还具有内置的机器学习和数据分析机制,可以优化实现所需数据获取水平所需的电台数量。传感器分散和站自主权确保测量的灵活性和可扩展性。关键词:水体,水化学和生态状况,蓝细菌的开花,测量平台
已启动一项任务,以开发一种允许常规和参数波束形成的声纳系统传感器。可用的空间约束和所需的声功率密度要求从同一换能器阵列生成常规和参数信号。报告了大量研究,记录了为确定最佳参数主频率而进行的模拟和实验。开发了一种双模换能器来生成常规和参数信号。该换能器能够在两个相距近 2.5 个八度的独立频率上进行高功率传输,并且在两个频率上都具有宽带宽。低频换能器是传统的 Tonpliz,其头部质量由多个节点安装的高频换能器组成,这些换能器可生成参数信号。高频换能器的节点板允许低频换能器将声能传输到介质,而不会横穿高频换能器的声压释放。数据显示了这些换能器的一小部分阵列的性能。
这些浮标高约 40 英尺,直径相同,配有 7,500 烛光氙气闪光灯,可在 10 英里外看到。它还配有一个可在 3 英里外听到的雾笛。由于它们是无人驾驶的,因此比操作灯塔船要经济得多。
CB-1250 数据浮标可为重型或耗电传感器提供更高的浮力和太阳能充电,同时仍保持相对较小的占地面积。它专为部署在湖泊、河流、沿海水域、港口、河口和其他淡水或海洋环境中而设计。与所有太阳能供电的 NexSens CB 系列数据浮标一样,它是一个高度可定制的平台,可以配置 NexSens 或用户提供的电子设备。它支持各种顶部和水下传感器和测量仪器。
概念传感器阵列可以实现对广阔海洋区域的持续测量。为了满足对低成本、低 SWaP 传感器阵列的需求,林肯实验室正在开发一种将电子设备嵌入长聚合物纤维的新方法。我们的研究人员通过加热一块聚合物并将其拉长至几公里长来拉制这些纤维。在拉制过程中,铜线被送入光纤内部,从而形成带有铜总线的光纤,这是阵列的关键推动因素。该总线将电力和数据传输到传感器,这些传感器在拉制后通过定制的焊接和封装工艺集成到光纤中。光纤末端是电子设备,它们单独寻址每个传感器,存储数据,并将数据无线传输到飞机、船舶或卫星。这项技术不仅可以满足海底监测的需求,还可以满足地面和太空应用的需求。
摘要:我们在自由衰减跌落试验中研究了球形浮标的升沉运动。采用综合方法研究浮标的振动,包括实验测量和互补数值模拟。实验是在配备一系列高速运动捕捉摄像机和一组高精度波浪仪的波浪池中进行的。模拟包括三组复杂程度不同的计算。具体来说,在一组计算中,流体体积 (VOF) 方法用于在重叠网格上求解不可压缩的两相 Navier-Stokes 方程,而其他组中的计算基于 Cummins 和质量弹簧阻尼器模型,这两个模型都植根于线性势流理论。实验数据与 VOF 模拟结果具有很好的一致性。虽然准确性较低,但两个降阶模型的预测也被发现非常可信。关于浮标的运动,获得的结果表明,在从大约等于其静态平衡吃水的高度(约为其半径的 60%)释放后,浮标经历了近谐波阻尼振动。进行的分析表明,浮标的吃水长度对振动的频率和衰减率有很大的影响。例如,与平衡状态下半浸没的相同尺寸的球形浮标(即吃水量等于半径)相比,测试浮标的振荡周期大约短 20%,并且其振荡幅度衰减速度几乎快两倍。总体而言,本研究为浮球的运动响应提供了更多见解,可用于优化浮标设计以实现能量提取。