摘要:我们在自由衰减跌落试验中研究了球形浮标的升沉运动。采用综合方法研究浮标的振动,包括实验测量和互补数值模拟。实验是在配备一系列高速运动捕捉摄像机和一组高精度波浪仪的波浪池中进行的。模拟包括三组复杂程度不同的计算。具体来说,在一组计算中,流体体积 (VOF) 方法用于在重叠网格上求解不可压缩的两相 Navier-Stokes 方程,而其他组中的计算基于 Cummins 和质量弹簧阻尼器模型,这两个模型都植根于线性势流理论。实验数据与 VOF 模拟结果具有很好的一致性。虽然准确性较低,但两个降阶模型的预测也被发现非常可信。关于浮标的运动,获得的结果表明,在从大约等于其静态平衡吃水的高度(约为其半径的 60%)释放后,浮标经历了近谐波阻尼振动。进行的分析表明,浮标的吃水长度对振动的频率和衰减率有很大的影响。例如,与平衡状态下半浸没的相同尺寸的球形浮标(即吃水量等于半径)相比,测试浮标的振荡周期大约短 20%,并且其振荡幅度衰减速度几乎快两倍。总体而言,本研究为浮球的运动响应提供了更多见解,可用于优化浮标设计以实现能量提取。
摘要:本文考虑了水下目标的定位,其中放置了许多声纳浮标来测量目标声音的方位。声纳浮标的方位精度非常低,例如 10 度。在实践中,我们可以使用多个异构声纳浮标,这样传感器噪声的方差可能与另一个传感器的方差不同。此外,一个传感器的最大感应范围可能与另一个传感器的最大感应范围不同。如果传感器检测到目标的方位,则真实目标必须存在于传感器的感应范围内。为了基于低精度的方位测量来估计目标位置,本文介绍了一种基于多个虚拟测量集 (VMS) 的新型目标定位方法。这里,每个 VMS 都是考虑到每个声纳传感器的方位测量噪声而得出的。据我们所知,本文在基于低精度的异构声纳浮标传感器定位目标的 2D 位置方面是新颖的,考虑到传感器的最大感应范围。通过使用计算机模拟将所提出的定位方法与其他最先进的定位方法进行比较,验证了所提出的定位方法的优越性(同时考虑时间效率和定位精度)。
摘要:本文考虑了水下目标的定位,其中放置了许多声纳浮标来测量目标声音的方位。声纳浮标的方位精度非常低,例如 10 度。在实践中,我们可以使用多个异构声纳浮标,这样传感器噪声的方差可能与另一个传感器的方差不同。此外,一个传感器的最大感应范围可能与另一个传感器的最大感应范围不同。如果传感器检测到目标的方位,则真实目标必须存在于传感器的感应范围内。为了基于低精度的方位测量来估计目标位置,本文介绍了一种基于多个虚拟测量集 (VMS) 的新型目标定位方法。这里,每个 VMS 都是考虑到每个声纳传感器的方位测量噪声而得出的。据我们所知,本文在考虑传感器的最大感应范围的情况下,基于低精度的异构声纳浮标传感器对目标的 2D 位置进行定位方面是新颖的。通过使用计算机模拟将所提出的定位方法与其他最先进的定位方法进行比较,验证了所提出的定位方法的优越性(同时考虑时间效率和定位精度)。
MDSPGP-6 活动 a (6) 系泊浮标 授权的系泊浮标活动必须符合以下适用的活动特定条件、本许可证的所有一般条件以及任何项目特定的特殊条件。此活动授权放置系泊浮标(第 10 节)(美国可航行水域,包括美国非潮汐可航行水域。)。A 类影响限制和要求:
从飞机上释放后,降落伞将下降速度限制在大约 30 米/秒。入水后,将部署一个水面浮标,其中包含用于声学数据遥测的甚高频发射器。全向和定向声学传感器信号被传输到机载或舰载声学处理器,用于对窄带、宽带和瞬态潜艇声发射进行被动检测。浮标还将以多静态或主动辅助角色检测低频主动发射和回声。
本文重点介绍了声呐浮标供应链所面临的挑战,声呐浮标供应链是美国及其许多主要盟友执行反潜战 (ASW) 行动的关键项目。本文认为,澳大利亚完全有能力解决这些问题,而且这样做将更好地保障印度太平洋地区的集体反潜战行动。在冷战后短暂的停滞之后,中国和俄罗斯的潜艇舰队得到了显著改进,反潜战重新成为美国海军的一项核心任务。然而,反潜战行动的需求不断增长,暴露出美国海上飞机舰队在维护、采购和战备方面的不足,而这些对于执行这些任务至关重要。本文认为,因此,美国在印度太平洋地区的盟友和合作伙伴(其中许多运营着美国制造的海上飞机)可能需要加大对地区反潜战行动的贡献。然而,所有这些国家都使用的声纳浮标供应链存在严重漏洞,有可能破坏集体努力,这些挑战早在全球 COVID-19 疫情爆发之前就已存在。目前,只有一家美国供应商为美国及其许多主要合作伙伴提供声纳浮标,但其长期满足不断增长的需求的能力存在疑问。在目前的情况下,声纳浮标供应链的任何中断都会对印度太平洋地区的盟友和合作伙伴造成不成比例的影响,同时他们也被要求加大对集体反潜战的贡献。
提出了一种用于水下监视应用中的协同轨迹检测的漂移声学传感器网络最优部署决策支持系统,并在模拟场景中进行了测试。该系统集成了海水流预报、传感器范围模型和简单的漂移浮标运动模型,以预测传感器位置和时间网络性能。采用多目标遗传优化算法,通过同时优化两个服务质量指标(网络区域覆盖和跟踪覆盖的时间平均值)来搜索一组帕累托最优部署解决方案(即网络漂移声纳浮标的初始位置)。优化后找到的解代表了两个指标之间不同的效率权衡,任务规划人员可以方便地评估这些解,以便在两个冲突目标之间选择具有所需折衷的解决方案。还通过无迹变换进行了灵敏度分析,以测试解决方案对网络参数和环境不确定性的稳健性。提供了利用真实概率海水流预报的模拟场景的结果,显示了所提方法的有效性。未来的工作是使该工具完全可操作并准备在真实场景中使用。� 2013 北约科学技术组织,海事研究和经验中心
桑迪亚国家实验室的研究人员开发了一种非线性控制技术,该技术利用了WEC沙漏的几何浮标设计和复杂的共轭控制(C3)策略,以优化多谐振条件下的功率吸收。沙漏浮标设计在波浪的重大运动或单个自由度的运动中运行,并且表现出比现有解决方案的优惠性能。沙漏浮标几何形状与海浪之间的独特相互作用产生了非线性立方存储效应,从而在操作过程中产生实际的能量存储或反应性。由于反应能力和能源存储系统(ESS)要求固有地嵌入了非线性浮标几何形状中,因此它仅需要简单的速率反馈控制,而无需存储或电源电子设备。通过专注于实现多谐和,这种开发可以增加WEC发电,使大小和重量减少,并有可能使现代WEC设计发电高效。
Sonobuoy_DS_UK_07-05-2019 ©2019 General Dynamics。保留所有权利。General Dynamics 保留随时更改其产品和规格的权利,恕不另行通知。此处注明的所有商标均为 General Dynamics 的商标。所有其他产品和服务名称均为其各自所有者的财产。