摘要 — 遥感技术是全球海洋表面监测的重要环节,雷达是检测海洋污染的有效传感器。当局在实际使用时,通常必须在覆盖面积和雷达收集的信息量之间做出权衡。为了确定最合适的成像模式,基于接收器操作特性曲线分析的方法已应用于由两个在 L 波段运行的机载系统收集的原始数据集,这两个系统都具有非常低的仪器本底噪声。该数据集是在海上控制释放矿物油和植物油期间获得的。研究了各种与极化相关的量,并评估了它们检测浮油覆盖区域的能力。本文报告了主要极化参数的相对顺序。当传感器的本底噪声足够低时,建议使用 HV,因为它提供最强的浮油 - 海面对比度。否则,VV 被发现是检测海面浮油最相关的参数。在所有研究的四极化设置中,与单极化数据相比,没有发现显著的附加值。更具体地说,通过增加仪器噪声水平,证明了所研究的结合四个极化通道的极化量具有主要由仪器本底噪声(即噪声等效西格玛零)驱动的检测性能。该结果是通过向原始合成孔径雷达 (SAR) 数据逐步添加噪声获得的,表明清洁海域和污染区域之间的极化区分主要源于单次反弹散射和噪声之间的差异化行为。因此,使用以低仪器本底噪声收集的 SAR 数据证明了矿物和植物油覆盖的海面雷达散射与布拉格散射没有偏差。
摘要 — 遥感技术是全球海洋表面监测的重要环节,雷达是检测海洋污染的有效传感器。当局在实际使用时,通常必须在覆盖面积和雷达收集的信息量之间做出权衡。为了确定最合适的成像模式,基于接收器操作特性曲线分析的方法已应用于由两个在 L 波段运行的机载系统收集的原始数据集,这两个系统都具有非常低的仪器本底噪声。该数据集是在海上控制释放矿物油和植物油期间获得的。研究了各种与极化相关的量,并评估了它们检测浮油覆盖区域的能力。本文报告了主要极化参数的相对顺序。当传感器的本底噪声足够低时,建议使用 HV,因为它提供最强的浮油 - 海面对比度。否则,VV 被发现是检测海面浮油最相关的参数。在所有研究的四极化设置中,与单极化数据相比,没有发现显著的附加值。更具体地说,通过增加仪器噪声水平,证明了所研究的结合四个极化通道的极化量具有主要由仪器本底噪声(即噪声等效西格玛零)驱动的检测性能。该结果是通过向原始合成孔径雷达 (SAR) 数据逐步添加噪声获得的,表明清洁海域和污染区域之间的极化区分主要源于单次反弹散射和噪声之间的差异化行为。因此,使用以低仪器本底噪声收集的 SAR 数据证明了矿物和植物油覆盖的海面雷达散射与布拉格散射没有偏差。
摘要 — 遥感技术是全球海洋表面监测的重要环节,雷达是检测海洋污染的有效传感器。当当局实际使用时,通常必须在覆盖面积和雷达收集的信息量之间进行权衡。为了确定最合适的成像模式,基于接收器操作特性曲线分析的方法已应用于由两个在 L 波段运行的机载系统收集的原始数据集,这两个系统都具有非常低的仪器噪声基底。该数据集是在海上控制释放矿物油和植物油期间获得的。研究了各种与极化相关的量,并评估了它们检测浮油覆盖区域的能力。本文报告了主要极化参数的相对顺序。当传感器的本底噪声足够低时,建议使用 HV,因为它可以提供最强的浮油-海面对比度。否则,VV 被发现是检测海面浮油最相关的参数。在所有研究的四极化设置中,与单极化数据相比,没有发现显着的附加值。更具体地说,通过增加仪器噪声水平,证明了所研究的组合四个极化通道的极化量的检测性能主要由仪器本底噪声驱动,即噪声等效 sigma zero。该结果通过逐步向原始合成孔径雷达 (SAR) 数据添加噪声获得,表明清洁海域和污染区域之间的极化区分主要来自单次反弹散射和噪声之间的差异化行为。因此,使用低仪器噪声基底收集的 SAR 数据证明,矿物和植物油覆盖的海洋表面的雷达散射与布拉格散射没有偏差。
摘要 — 遥感技术是全球海洋表面监测的重要环节,雷达是检测海洋污染的有效传感器。当局在实际使用时,通常必须在覆盖面积和雷达收集的信息量之间做出权衡。为了确定最合适的成像模式,基于接收器操作特性曲线分析的方法已应用于由两个在 L 波段运行的机载系统收集的原始数据集,这两个系统都具有非常低的仪器本底噪声。该数据集是在海上控制释放矿物油和植物油期间获得的。研究了各种与极化相关的量,并评估了它们检测浮油覆盖区域的能力。本文报告了主要极化参数的相对顺序。当传感器的本底噪声足够低时,建议使用 HV,因为它提供最强的浮油 - 海面对比度。否则,VV 被发现是检测海面浮油最相关的参数。在所有研究的四极化设置中,与单极化数据相比,没有发现显著的附加值。更具体地说,通过增加仪器噪声水平,证明了所研究的结合四个极化通道的极化量具有主要由仪器本底噪声(即噪声等效西格玛零)驱动的检测性能。该结果是通过向原始合成孔径雷达 (SAR) 数据逐步添加噪声获得的,表明清洁海域和污染区域之间的极化区分主要源于单次反弹散射和噪声之间的差异化行为。因此,使用以低仪器本底噪声收集的 SAR 数据证明了矿物和植物油覆盖的海面雷达散射与布拉格散射没有偏差。
摘要 — 遥感技术是全球海洋表面监测的重要环节,雷达是检测海洋污染的有效传感器。当局在实际使用时,通常必须在覆盖面积和雷达收集的信息量之间做出权衡。为了确定最合适的成像模式,基于接收器操作特性曲线分析的方法已应用于由两个在 L 波段运行的机载系统收集的原始数据集,这两个系统都具有非常低的仪器本底噪声。该数据集是在海上控制释放矿物油和植物油期间获得的。研究了各种与极化相关的量,并评估了它们检测浮油覆盖区域的能力。本文报告了主要极化参数的相对顺序。当传感器的本底噪声足够低时,建议使用 HV,因为它提供最强的浮油 - 海面对比度。否则,VV 被发现是检测海面浮油最相关的参数。在所有研究的四极化设置中,与单极化数据相比,没有发现显著的附加值。更具体地说,通过增加仪器噪声水平,证明了所研究的结合四个极化通道的极化量具有主要由仪器本底噪声(即噪声等效西格玛零)驱动的检测性能。该结果是通过向原始合成孔径雷达 (SAR) 数据逐步添加噪声获得的,表明清洁海域和污染区域之间的极化区分主要源于单次反弹散射和噪声之间的差异化行为。因此,使用以低仪器本底噪声收集的 SAR 数据证明了矿物和植物油覆盖的海面雷达散射与布拉格散射没有偏差。
200 x 500 米的浮油,位置:40°17.4’ n-18°30.0’e(碳氢化合物聚集体) 距海岸 5 海里处有多处浮油,位置:40°21.6’n-018°29.7’e 浮油(连续尾流)宽 30 米,长 1 海里,碳氢化合物聚集体 - 厚 5/6 毫米,位置:40°17.6’n-018°28.8’e 从 torre specchia ruggeri 到 capo d’otranto 面向 Salento 海岸的海域出现破碎的浮油,距海岸 5 海里,位于 marina s.foca melendugno 沿海区域,岸上浮油宽 100 米
如果有风和洋流数据,预测石油位置的任务就会变得简单,因为两者都对浮油的移动有影响。经验表明,浮油会以大约 3% 的风速顺风移动。在存在地表水流的情况下,任何风驱动的运动都会叠加上 100% 水流强度的石油额外运动。在靠近陆地的地方,预测石油运动时必须考虑任何潮汐流的强度和方向,而在更远的海上,其他洋流的贡献比潮汐运动的周期性更重要。因此,了解盛行风和洋流后,就可以从已知位置预测浮油的移动速度和方向,如上图 1 所示。存在可以绘制石油泄漏轨迹的计算机模型。计算机模型和简单的手动计算的准确性取决于所用水文数据的准确性以及风速和风向预测的可靠性。
深水地平线 (DWH) 大规模和持续性漏油事件对应急响应能力提出了挑战,需要在天气和操作层面进行准确、定量的石油评估。尽管经验丰富的观察员是溢油应急响应的中流砥柱,但训练有素的观察员人数很少,而且天气、石油乳化和场景照明几何等混杂因素也带来了挑战。广泛的机载和星载被动和主动遥感技术辅助了 DWH 溢油和影响监测。油膜厚度和油水乳化比是控制/清理的关键溢油响应参数,对于厚 (>0.1 毫米) 油膜,这些参数是从 AVIRIS(机载可见光/红外成像光谱仪)数据中定量得出的,使用基于近红外光谱吸收特征的形状和深度的光谱库方法。MODIS(中分辨率成像光谱仪)卫星,可见光谱宽带数据,表面浮油对太阳反射的调制,允许推断总浮油。多光谱专家系统使用神经网络方法提供快速响应厚度类别图。机载和卫星合成孔径雷达(SAR)提供全天空条件下的天气数据;然而,SAR 通常无法区分厚(>100 μ m)的油膜和薄油膜(至 0.1 μ m)。UAVSAR(无人驾驶飞行器 SAR)的信噪比显著提高,空间分辨率更高,可以成功区分与油膜厚度、表面覆盖率和乳化程度相结合的模式。使用 AVIRIS 研究了现场燃烧和烟羽,并证实了星载 CALIPSO(云气溶胶激光雷达和红外路径探测卫星观测)对燃烧气溶胶的观测。CALIPSO 和水深测量激光雷达数据记录了浅层地下石油,尽管需要辅助数据进行确认。机载高光谱、热红外数据具有夜间和阴天收集优势,并且与 MODIS 热数据一样被收集。然而,解释挑战和缺乏快速反应产品阻碍了其大量使用。快速反应产品是响应利用的关键——数据需求对时间至关重要;因此,高技术准备水平对于遥感产品的运营使用至关重要。DWH 的经验表明,开发和投入使用新的溢油应急遥感工具必须先于下一次重大石油泄漏事件发生。© 2012 Elsevier Inc. 保留所有权利。