幼虫在整个海洋中都很丰富。幼虫在研究中被忽略了,因为它们很难进行,并且被认为在生物地球化学周期和食物奖中并不重要。我们综合证据,表明它们的独特生物学使幼虫可以将更多的碳转移到更高的营养水平,而深入海洋,而不是通常所欣赏的。幼虫在人类世可能变得更加重要,因为他们吃的小浮游植物被预计在气候变化下会更加普遍,从而减轻了预计的预计未来在海洋生产力和薄片中的下降。我们确定了批判性知识差距,并认为应将幼虫纳入生态系统评估和生物地球化学模型中,以改善对未来海洋的预测。
微生物倾向于积聚在表面,形成诸如生物膜之类的聚集体,这使它们能够抵抗各种环境压力和抗菌剂。这种能力阻碍了对包括沙门氏菌在内的致病微生物引起的疾病的有效治疗,沙门氏菌是造成全球大量死亡的罪魁祸首。本研究旨在使用代谢组学方法比较肠炎沙门氏菌浮游细胞和固着细胞的代谢特征。用 LC/MS 方法分析从细菌细胞中提取的代谢物。使用 Thermo Xcalibur v 3.1 软件分析原始数据。对于数据处理,使用 XCMS 进行特征检测、保留时间、校正和对齐。通过 MetaboAnalyst 软件 v 6.0 中的单变量和多变量统计方法(PCA、PLS-DA、热图)分析数据矩阵。总共 121 种代谢物被推定为两种细菌状态之间的差异代谢特征,并且它们与它们相应的代谢途径相关。在浮游细胞中表现出正向调节的代谢物包括脯氨酸、苯丙氨酸,它们是必需代谢物的前体,也是应激适应机制的一部分。此外,腐胺和尸胺在生长、应激反应和细胞稳定性中起着至关重要的作用。相反,固着细胞中最具代表性的代谢物包括赖氨酸、腺苷、嘌呤、嘧啶和柠檬酸,主要与维持细胞稳态、应激反应和代谢调节有关。最后,通路富集分析确定了 11 条通路的代谢变化,主要涉及嘌呤和嘧啶代谢、精氨酸和脯氨酸代谢以及维生素 B6 代谢。这些发现有助于鉴定与肠炎沙门氏菌固着细胞生物膜形成有关的潜在代谢途径。
摘要 . 过去五年来,印度尼西亚的海藻产量大幅下降了 3.55%,其中斯里布群岛地区的产量急剧下降,从 2018 年的 196 吨下降到 2022 年的 2 吨。了解支持海藻养殖的生物和环境参数,特别是微生物和浮游生物多样性,对于可持续生产至关重要。这项研究在 2023 年雨季(4 月至 5 月)和旱季(7 月至 8 月)期间在斯里布群岛的 1996 个养殖点对 Kappaphycus alvarezii (Doty) Doty ex PCSilva 进行了研究,涉及五个主要岛屿附近 12 个点的水质评估和生物采样。细菌群落的下一代测序 (NGS) 表明,Alphaproteobacteria,特别是红细菌科,在各个季节都占主导地位,而浮游动物在雨季占主导地位,浮游植物在旱季占主导地位。样本中没有有害藻类和致病细菌,表明海藻生长的环境总体上是安全的。虽然通过升高的油含量和叶绿素 a 检测到了一些人为污染,但总体水质被认为适合海藻养殖。研究结果表明,通过适当的管理来减轻污染,Kepulauan Seribu 地区仍具有可持续海藻养殖的强大潜力。关键词:宏基因组、细菌、浮游生物、Kepulauan Seribu、海藻养殖。
95 ℃ 30 秒、40 ℃ 30 秒、72 ℃ 30 秒,25 个循环,最后 72 ℃ 延伸 5 分钟。第一轮 PCR 产物用 AMPure XP 磁珠(Beckman-Coulter,印第安纳波利斯,印第安纳州,美国)纯化。在第二轮 PCR 中,取 2 µL 纯化的第一轮产物与 NexteraXT Indexed Primers 一起用于最终文库构建。循环条件包括初始变性步骤 95 ℃ 3 分钟,然后 10 个循环 95
根据IPCC气候变化2023综合报告,由于累积CO 2排放的升级,全球变暖预计将从2021年持续增加到2040年。即使在最低的温室气体排放情况下,也有更大的机会达到全世界的温度至1.5°C,这是工业化期之前的水平。在较高的排放情况下,温度可能会超过此阈值。增加的工业活动和城市化导致了CO 2的排放量更高,这被认为是导致世界气候和温度变化的主要温室气体[1]。碳固存是捕获大气二氧化碳并将其存储在长期碳储层中的过程,以防止其释放到大气中[2],以减轻全球变暖并避免气候变化[3]。二氧化碳是通过光合作用作为生物碳循环的一部分从生产者中隔离的[4]。
半导体和绝缘子中价频段的函数的扩散是一种特征性的特性,可以粗略估计材料的绝缘性。我们阐述的是,由于它们等于在动量上集成的价值带状态的量子指标,因此可以从光学电导率和吸光度中从光学电导率和吸光度中从实验中提取量规不变部分。由于量子度量进入光导率的矩阵元素,因此可以从介电函数的假想部分的频率整合中获得价频段散布函数的扩散。我们实际上是为SI和GE等典型的半导体以及拓扑绝缘子(如BI 2 TE 3)进行了证明。在2D材料中,可以从吸光度除以频率,然后在频率上积分的吸光度中获得Wannier函数的扩散。将此方法应用于石墨烯,揭示了由固有的自旋轨道耦合引起的有限扩散,这可以通过微波范围的吸光度检测到。毫米波范围内扭曲的双层石墨烯的吸光度可用于检测板的形成并量化其量子度量。最后,我们将我们的方法应用于六边形过渡金属二进制MX 2(M = MO,W; X = S,SE,TE),并演示了Excitons和Emalligh Energe Bangs(例如Excitons and Emally Energe Bangs)如何影响Strier功能的传播。
最近的北极气候变暖引起了北极海洋(AO)海冰厚度和范围的逐渐逐渐下降(Comiso等,2008; Kacimi&Kwok,2022; Kwok,2018; Laxon et al。 AO表面变暖趋势(Z. Li等,2022; Shu等,2022; Steele等,2008),主要是由于有据可查的气候变暖趋势(Rantanen等,2022)。然而,当前AO分层的空间和时间变化似乎不仅受海冰融化和海洋变暖的控制,而且还通过风和河流淡水径流的强度来控制(Hordoir等,2022年)。此外,即使是亚极区域(大西洋和太平洋)的水质量对流的变化也可以改变AO分层(Polyakov等,2020)。海冰融化和积聚的季节性周期强烈调节AO植物浮游生物的生命周期(Janout等,2016)。Kahru等。 (2010,2016)使用遥感观察结果表明,在近几十年以前的春季浮游植物布鲁姆(SPB)时,春季浮游植物的时机(SPB)的时机发生了,并假设这是由于气候变暖驱动的海冰的较早破裂所致。 在温带和高纬度海洋中,SPB通常开始其发育,这是由于水柱的季节性增加引起的光限制(Siegel等,2002)是由对流驱动的混合减少引起的(Mignot等人,2018年)。Kahru等。(2010,2016)使用遥感观察结果表明,在近几十年以前的春季浮游植物布鲁姆(SPB)时,春季浮游植物的时机(SPB)的时机发生了,并假设这是由于气候变暖驱动的海冰的较早破裂所致。在温带和高纬度海洋中,SPB通常开始其发育,这是由于水柱的季节性增加引起的光限制(Siegel等,2002)是由对流驱动的混合减少引起的(Mignot等人,2018年)。物理海洋的这些特定条件使海洋浮游植物可以在舒适的区域中度过足够的时间,从而提高了细胞的倍增率并超过其死亡率。这些环境条件即使在极地海洋中也可以触发SPB(Behrenfeld等,2017; Uchida等,2019),其中
fi g u r e 2上升后生阿尔法和β多样性模式。(a)在每个深度区域和采样位置,海洋后生动物门的相对读取丰度。(b)香农多样性指数(H')和(c)在所有四个深站组合的每个深度区域的SRS的物种丰富度标准化的Motus数据。Tukey的HSD成对比较与Tukey调整后的P值进行了比较。*表示<0.05的显着差异,****表示显着差异<0.001。(d)基于jaccard距离的Motus社区结构(K = 2)的非线性多维标度。颜色表示海洋区,点形表示站点,地块上显示的应力值。深度区域被定义为上皮(0-99 m),下层(100-200 m),中质质量(201-1000 m)和浴类质(> 1000 m)。