摘要:沉积脂质池由无数个单个成分组成。由于它们对有机碳固换的重要性及其在古气候和地球生物学重建中的应用,因此已经研究了数十年来的构图,但仍缺乏对其组成的总体看法。在某种程度上,这种不确定性与沉积物脂质的不同来源有关,它们都可以通过沉积物从上覆的水柱中传递,但也可以由沉积物居住的生物在原地中产生。另一种不确定性与脂质组之间的保存程度不同,并且相对于其他有机物。在这里,我们使用高分辨率质谱法对黑海中的沉积脂多组进行了不靶向的分析。除了发现了浮游植物衍生的化石脂质外,还发现了一套多种多样的鞘脂,占沉积性脂质体的约20%。这些鞘脂是由沉积性厌氧菌在原位产生的,厌氧菌可能使用鞘脂代替磷脂,这可能是由于缺氧沉积物中磷酸盐的缺乏。我们的结果表明,尽管浮游植物衍生的脂质贡献了50-60%的沉积脂肪组,但可能会忽略了细菌脂质的重要性,尤其是原位产生的鞘脂。
微生物转化和氧化有机材料(即异育)在海洋关键元素的地球化学循环中起着基本作用。通过它们的生长和活性,异养微生物降低了浮游植物在地表海中产生的许多有机物,从而导致营养素的再生和再分配,碳和碳的再分化回到水柱中。但是,大多数有机物在物理上太大,无法直接被异养微生物吸收。因此,许多异养分分泌外酶,这些外酶将细胞外的大分子分解成较小的底物,然后可以直接被细胞吸收。微生物用来分泌这些酶的生化系统的复杂性质表明,它们不太可能存在于最早的异育体中。在前研究前海洋中,异养微生物只能进入一小部分有机物,以便大多数死去的浮游植物生物量直接通过水柱传递并沉降到海底。在这里,我们综合了现有的地理学证据,以检查在早期海洋中没有外酶的情况下有机物的命运。我们建议,在外酶,有机物保存,金属的可用性和磷回收之前,在地球上的运行方式与在当代地球上的运行方式不同。
<实用方法>肺(左上和下叶,右上和下叶),肾脏(左肾脏,右肾脏),肝脏和脾脏被从溺水的身体中取出。将每个器官切成30 mg,将其浸入100 L提取物SYBRGREEN提取物N-Amp™Plant PCR试剂盒(美国Sigma-Aldrich)中,并在95°C孵育10分钟。之后,使用浸泡解决方案作为模板进行实时PPCR。实时PCR的反应混合物(总量为20·L)如下:模板4·L,Sybrgreenextract- n-amppcrReadyMix 10·L,底漆(前向,反向)2·l,引用1·L,rnaseednasefree Water 1·L 1·L。当前生产的引物是Nitzschia 18 S RRNA,Fragilariaα-微管蛋白,Navicula IBP,Naviculaβ-肌动蛋白,Fragilariaβ-微管蛋白,RBCL和23 S rRNA,靶向生活在许多海洋和河流中的植物Planchon。在上述底漆被证明是有用的之后,我们计划为针对海洋和河流(例如海水Chaetoceros)的浮游植物物种准备底漆,并试图估计溺水位置。这使得可以在一定程度上恢复在溺水中发现的浮游植物的物种组成。作为对照,从发现溺水物体的位置收集水,并检查放大效率是否有差异。最后,我们认为,通过创建一个麦克风阵列,其中排列了多个植物浮游生物的DNA部分序列,我们可以以高精度恢复浮游生物物种。
海洋光合作用有助于通过允许海洋植物和藻类从大气中吸收二氧化碳(CO 2)来减轻全球变暖。这些生物使用光合作用将阳光,水和Co 2转化为有机分子,从而释放氧作为副产品。这种机制隔离了大量的碳,将其存储在生物质和沉积物中,尤其是在红树林,海草和盐沼等“蓝色碳”栖息地中。此外,微观浮游植物在海洋表面层中进行大规模光合作用,从而显着助长了这一努力。保护和恢复海洋栖息地对于改善碳封存和防止气候变化至关重要。
这些单个数据与数字行之间的链接似乎是由于以下原因是不可能的:1。单个检查中使用的捕鱼方法截然不同。这是浮游生物探险主要采用步骤。Lohmann。 在1912年使用了离心的图形样品。 hentschel在1924年赢得了用甲板洗涤泵泵送的水量,以便可以过滤浮游网络,而“ dana”ü探险队可以过滤一个1.5或的大型弦乐网络 2 m开口和直径亲属。 来自“流星”探险的信息基于离心机,关闭网络和台阶捕获,英语方面与“ Plankton Recorder”合作,Harvey在1934年开发了一个比色的ME THODE,以确定浮游植物的数量。 这些方法中的每一种都具有特定的作用,但是由于没有进行标准化,因此无法将您的结果相互比较。 2。 根据不同的方法,在搜索中寻求的生物体和生物的组成也大不相同。 部分是单独的类型或属,部分是Nanno,Network或Macroplankton的全部。 3。 最后,根据所使用的方法,数字是指非常不同的级别。 通常在Nanno和Phytoplankton中指定每升水的细胞数量。Lohmann。在1912年使用了离心的图形样品。hentschel在1924年赢得了用甲板洗涤泵泵送的水量,以便可以过滤浮游网络,而“ dana”ü探险队可以过滤一个1.5或2 m开口和直径亲属。来自“流星”探险的信息基于离心机,关闭网络和台阶捕获,英语方面与“ Plankton Recorder”合作,Harvey在1934年开发了一个比色的ME THODE,以确定浮游植物的数量。这些方法中的每一种都具有特定的作用,但是由于没有进行标准化,因此无法将您的结果相互比较。2。根据不同的方法,在搜索中寻求的生物体和生物的组成也大不相同。部分是单独的类型或属,部分是Nanno,Network或Macroplankton的全部。3。最后,根据所使用的方法,数字是指非常不同的级别。通常在Nanno和Phytoplankton中指定每升水的细胞数量。在其他情况下,活物质的量是每小时CCM确定的,例如在“ DANA”探险队中,在对单个动物组的检查中,指定了单位或空间单位的单位数量。带有浮游生物记录器的录音导致每英里的个体,比色方法最终与所谓的“ Harveeding a Hirwaveing hire”一起使用。 h。通过将其与标准溶液进行比较,它可以确定植物色素的量,NaClR从浮游植物中捕捞一定数量的水。很明显,在这种情况下,直接比较不同的结果似乎是不可能的,但是它似乎在寻找指向所有个人的链接的链接,即
叶绿素:叶绿素是一种光合色素,存在于几乎所有植物和浮游植物中。通过测量水样中叶绿素“a”的含量,可以确定水中的藻类数量。与叶绿素 a 一起测量的其他光合色素还有叶绿素 b、叶绿素 c 和胡萝卜素。它们的颜色各不相同,在植物和浮游植物物种中的含量也不同。云量:云量测量是在现场近似的,记录范围从零云量(无云)到 100% 云量(完全阴天)。云量会影响叶绿素的产生、塞氏深度测量和气温。颜色:颜色是采样水的色调,通过主观测试确定,该测试涉及将样品与已知浓度的有色溶液进行比较。天然金属离子(铁和锰)、腐殖质和泥炭物质、浮游生物、单宁和工业废物会影响水体的颜色。浊度也会影响颜色。溶解氧:溶解氧 (DO) 是水中的气态氧 (O 2 )。水吸收氧气的速率取决于温度、盐度、大气压和风速。低温、低盐度和低海拔是吸收更多氧气的理想因素。在不存在氧气或鱼类种群、细菌含量高甚至存在污染的泉水中,溶解氧可能接近 0 mg/L,而在风引起的高通量曝气以及光合作用过程中水生植物产量高(如藻类大量繁殖)的情况下,溶解氧可能高达 15 mg/L。溶解氧可以间接表示水体的质量。肠球菌:肠球菌是一种指示生物,其存在决定了水质的恶化。肠球菌是粪便链球菌的一个亚群。肠球菌对各种温度和 pH 的抵抗力使其成为实验室水样分析的理想高效细菌。
幼虫在整个海洋中都很丰富。幼虫在研究中被忽略了,因为它们很难进行,并且被认为在生物地球化学周期和食物奖中并不重要。我们综合证据,表明它们的独特生物学使幼虫可以将更多的碳转移到更高的营养水平,而深入海洋,而不是通常所欣赏的。幼虫在人类世可能变得更加重要,因为他们吃的小浮游植物被预计在气候变化下会更加普遍,从而减轻了预计的预计未来在海洋生产力和薄片中的下降。我们确定了批判性知识差距,并认为应将幼虫纳入生态系统评估和生物地球化学模型中,以改善对未来海洋的预测。
在加拿大缅因州和缅因州的湾共同努力,无论是在缅因州还是更远的地方,都继续紧密合作研究我们的海洋。联合研究主题包括海湾的变暖,北大西洋右鲸或龙虾渔业管理。一个例子是一个研究项目,该项目是在缅因州东布斯贝(East Boothbay)的海洋科学“ Downeast”的Bigelow实验室和纽芬兰纪念大学和拉布拉多(Labrador)的研究项目,研究了拉布拉多海的浮游植物。用雷切尔·西普勒(Rachel Sipler)博士的话说:“能够收集一系列数据并通过如此多的科学镜头观察它,这使我们对系统更完整。我们收集的数据将告知我们对碳在未来几年中如何穿越这个关键领域的理解。”