1个微生物学单元,大romagna枢纽实验室,意大利47522饼; sofi.monta.msm@gmail.com(M.S.M.); mariavittoria.tamburini@auslromagna.it(M.V.T。); valentina.arfilli@auslromagna.it(V.A。); manuela.morotti@auslromagna.it(M.M.); pasqua.schiavone@auslromagna.it(P.S.); francesco.congestri@auslromagna.it(f.c.); martina.manera@auslromagna.it(M.M.); agnese.denicolo@auslromagna.it(a.d。); francesca.taddei@auslromagna.it(f.t。); laura.grumiro@auslromagna.it(l.g。); silvia.zannoli@auslromagna.it(S.Z.); giorgio.dirani@auslromagna.it(G.D.); vittorio.sambri@unibo.it(V.S.); monica.cricca3@unibo.it(M.C。)2医学和外科科学系 - Dimec,母校Studiorum-博洛尼亚大学,意大利博洛尼亚40126; claudia.colosimo2@unibo.it(c.c. ); martina.brandolini@outlook.it(m.b。 ); Alessandra.depascal3@unibo.it(A.M.D.P.) 3 DIN - 母校训练学的工业工程部门 - 博洛尼亚大学,意大利博洛尼亚40126; giulia.gatti12@unibo.it 4卫生服务研究,评估和政策部门,Ausl Romagna,意大利Rimini 42123; michela.fantini@auslromagna.it *通信:anna.marzucco@auslromagna.it;电话。 : +39-34960957142医学和外科科学系 - Dimec,母校Studiorum-博洛尼亚大学,意大利博洛尼亚40126; claudia.colosimo2@unibo.it(c.c.); martina.brandolini@outlook.it(m.b。); Alessandra.depascal3@unibo.it(A.M.D.P.)3 DIN - 母校训练学的工业工程部门 - 博洛尼亚大学,意大利博洛尼亚40126; giulia.gatti12@unibo.it 4卫生服务研究,评估和政策部门,Ausl Romagna,意大利Rimini 42123; michela.fantini@auslromagna.it *通信:anna.marzucco@auslromagna.it;电话。: +39-3496095714
1 康奈尔大学微生物学系,纽约州伊萨卡 14853,美国 2 伍兹霍尔海洋研究所海洋化学和地球化学系,马萨诸塞州伍兹霍尔 02543,美国 3 佛罗里达大学土壤、水和生态系统科学系,佛罗里达州盖恩斯维尔 32611,美国 4 佛罗里达大学森林、渔业和测绘科学学院,佛罗里达州盖恩斯维尔 32611,美国 5 美属维尔京群岛大学海洋与环境研究中心,美属维尔京群岛圣托马斯 00802 6 南佛罗里达大学海洋科学学院,佛罗里达州圣彼得堡 33701,美国 7 美国地质调查局圣彼得堡海岸与海洋科学中心,佛罗里达州圣彼得堡 33701,美国 8 北伊利诺伊大学生物科学系,伊利诺伊州迪卡尔布 60115,美国 9 范霍尔·拉伦斯坦应用科学大学科学,8901 BV 吕伐登,荷兰 10 瓦赫宁根大学海洋动物生态学组,6708 PB 瓦赫宁根,荷兰 11 蒙大拿州立大学微生物学和细胞生物学系,博兹曼,MT 59717,美国 12 阿鲁巴国家公园基金会,圣克鲁斯,阿鲁巴岛
桑塔纳 - 西尼罗斯(Mariana Libertad); Rodríguez-Canul,Rossanna; Zamora-Briseño,JesúsAlejandro;莫妮卡的Améndola-Pimienta;来自Roxana的Silva-Dávila; Ordonez-López,Uriel;伊瓦恩(Iván)Velázquez-Abunader; Ardisson,Pedro-Luis。 div>墨西哥湾南部的章鱼顺序的副统治的形态和分子ID。 div>XXII墨西哥平面学学会和墨西哥浮游生物学会的XV国际会议A. C.在虚拟方式上,从2021年9月27日至10月1日,
美容工业已经包含了微生物的多样化世界,将细菌,酵母,真菌,藻类和浮游生物纳入了护肤,护发和美容产品。这一趋势强调了该行业对创新和可持续性的承诺,并利用自然的微生物多样性来实现出色的美容应用。微生物(例如乳酸杆菌和双歧杆菌)被整合到护肤配方中,以使其在保留健康的皮肤微生物组,减少炎症并增强皮肤屏障功能方面有益。细菌,例如塞拉蒂亚·马斯科斯(Serratia Marcescens)和假单胞菌(Pseudomonas putida)提供天然着色剂,而酵母菌发酵产生了各种香气。酵母,尤其是酿酒酵母的酵母,提供保湿和皮肤调节益处。藻类和浮游生物富含生物活性化合物,其保湿和抗氧化特性为美容工业做出了重大贡献。向天然成分的转变促使该行业采用生物技术过程,例如发酵过程,该过程合成了改善皮肤水合,弹性和辐射的肽,酶和有机酸的合成。发酵副产物充当天然防腐剂,延长了产品保质期并增强功效。微生物衍生的成分为皮肤健康提供了一系列好处,包括保湿,抗炎作用以及促进平衡的皮肤微生物组。将这些成分纳入护肤配方中支持美容科学和可持续性的进步,满足消费者对自然,有效和环保美容解决方案的需求。
抽象的微塑料(MPS)具有修改水生微生物通讯和分布微生物(包括病原体)的潜力。这给水生生命和人类健康带来了潜在的风险。尽管如此,在MPS上的“搭便车”微生物的命运在不同的水生栖息地仍然在很大程度上未知。为了解决这个问题,我们进行了50天的微型COSM实验,操纵河口条件,以使用长阅读的元法编码方法来研究河流,海洋和塑料之间细菌和微核细胞的交换。我们的发现表明,塑料上的细菌有显着增加,包括假单胞菌,鞘氨拟型,杂种,菌丝,Brevundimonas,aquabacterium和thalassolituus,所有这些都以其污染物降解能力,特定多余的聚糖水纤维剂而闻名。我们还观察到降解的真菌(即cladosporium和plectosposposella)和早期分化的真菌(隐菌菌,也称为rozellomycota)与plastisphere的早期分化真菌有很强的关联。SEA MPS主要由真菌(70%)殖民,其中一小部分河流向微生物(1% - 4%)殖民。海水中仅有MPS的存在将浮游生物真菌的相对丰度从2%增加到25%,这表明浮游生物和质地群落之间的交流很大。使用微生物源跟踪,我们发现MPS仅分别分散了3.5%和5.5%的河流细菌和微核生素群落。因此,尽管MPS选择并促进了生态意义的微生物的扩散,但不太可能在不同的水生栖息地之间进行急剧的组成变化。
1。梅纳特人的功能辐射较低 - 没有飞行或海洋的梅托斯人,而且一些极其生产的食物来源从未被挖掘出来(海洋浮游生物 - 切木木和飞行的昆虫 - chiroptera)。2。梅塔瑟里亚人在结构性的身体计划中更为保守。没有像Eutherians一样将四肢修改为鳍或翅膀。3。Metatherians无法利用大尺寸(最大的Metatherian -Red Kangaroo-仅是最大的Eutherian(蓝鲸)的1/1,300。4。梅塔瑟里亚人从未发展过高度社会行为(低领土)。5。梅塔瑟里亚人没有发展出Eutherians的系统多样性。
地球观察者新网站的推出远非我们要讨论的唯一地球科学发布。在上一期中,我们宣布浮游生物、气溶胶、云、海洋生态系统 (PACE) 任务已于 2024 年 2 月 8 日凌晨从肯尼迪航天中心成功发射。仅仅 63 天后,NASA 最新的地球观测卫星的数据就向公众开放了——见图。这些数据将扩展和改进 NASA 20 多年来对我们的生物海洋、大气气溶胶和云层的全球卫星观测,并启动一套先进的气候相关数据记录。最终,PACE 是第一个提供测量结果的任务,这些测量结果将能够预测渔业的“繁荣-萧条”周期、有害藻类的出现以及其他因素
简介:目前,北极海洋生态系统正在目睹全球最快的身体变化,导致全球和底栖群落和食品网络结构发生转变,这与引入北方物种有关。凝胶状浮游生物或果冻鱼代表了一个特定的一组,其中几种北方物种容易经历显着的极点范围的扩张,并且在持续变化的过程中,北极的种群增加。从历史上看,果冻被认为是一种营养的死胡同,但是使用现代工具的越来越多的研究强调了它们作为海洋食品网中主要猎物的作用。在这项研究中,我们旨在验证果冻和其他后生动物作为北极夜间食品网络中的食物来源的作用,而骨髓资源有限。
水生寿命是指居住在水体中的所有植物,动物和微生物,包括海洋,河流,湖泊和湿地。这种多样化的生物群在维持地球生态系统的健康并为人类和野生动植物提供基本服务方面起着至关重要的作用。从微观浮游生物中漂流到深海到鲸鱼等最大的海洋哺乳动物,水生生物代表着一个庞大而复杂的生命网,可以维持生物多样性,调节全球气候并支持人类经济。水生生物非常多样化,可以分为两个主要类别:海洋和淡水生物。居住在海洋中的海洋生物是各种各样的物种的家园,从微小的浮游生物到像蓝鲸这样的巨大鱼类。海洋覆盖了地球表面的71%,为海洋物种提供了许多栖息地和环境条件。海洋生态系统包括珊瑚礁,开阔海洋,深海环境以及红树林和河口等沿海地区。淡水生活生活在河流,湖泊,池塘和湿地。虽然淡水栖息地仅占地球水的3%,但它们是各种各样的物种的家园,包括鱼类,两栖动物,水生植物和微生物。淡水生态系统高度多样,物种适应不同的水温,盐度和氧气水平。湖泊,河流和湿地为许多物种提供关键的栖息地,并支持全球生物多样性。生活在水体底部或附近的生物,例如螃蟹,蜗牛和某些鱼。在海洋和淡水环境中,水生寿命都可以根据其在生态系统中的作用归类为各个组。微小的生物,包括浮游植物(植物)和浮游动物(动物),它们在水中漂移并作为许多水生动物的主要食物来源。积极游泳动物,例如鱼,鲸鱼和海龟,这些动物穿过水柱。水生生物在维持生态系统的平衡和支持地球环境方面起着至关重要的作用。最关键的功能之一是产生氧气。浮游植物,在海洋和淡水系统中发现的微观植物,
心血管疾病(CVD)仍然是全球死亡率的主要原因。核苷酸寡聚结构域 - 富含亮氨酸的重复和含吡啶结构域的蛋白3(nlrp3)含量含量与多种类型的CVD有关。作为先天免疫的一部分,nlrp3界面症具有至关重要的作用,需要启动和激活信号才能触发炎症。nlrp3炎症杂志既导致IL-1家族细胞因子的释放,又导致了一种不同形式的编程细胞死亡,称为pyroptoposis。与CVD相关的炎症已与NLRP3浮游生物相关的广泛研究。在这篇综述中,我们描述了触发NLRP3启动和激活的途径,并讨论其对CVD的致病作用。这项研究还概述了针对NLRP3浮游生物的潜在治疗方法。