叶绿素:叶绿素是一种光合色素,存在于几乎所有植物和浮游植物中。通过测量水样中叶绿素“a”的含量,可以确定水中的藻类数量。与叶绿素 a 一起测量的其他光合色素还有叶绿素 b、叶绿素 c 和胡萝卜素。它们的颜色各不相同,在植物和浮游植物物种中的含量也不同。云量:云量测量是在现场近似的,记录范围从零云量(无云)到 100% 云量(完全阴天)。云量会影响叶绿素的产生、塞氏深度测量和气温。颜色:颜色是采样水的色调,通过主观测试确定,该测试涉及将样品与已知浓度的有色溶液进行比较。天然金属离子(铁和锰)、腐殖质和泥炭物质、浮游生物、单宁和工业废物会影响水体的颜色。浊度也会影响颜色。溶解氧:溶解氧 (DO) 是水中的气态氧 (O 2 )。水吸收氧气的速率取决于温度、盐度、大气压和风速。低温、低盐度和低海拔是吸收更多氧气的理想因素。在不存在氧气或鱼类种群、细菌含量高甚至存在污染的泉水中,溶解氧可能接近 0 mg/L,而在风引起的高通量曝气以及光合作用过程中水生植物产量高(如藻类大量繁殖)的情况下,溶解氧可能高达 15 mg/L。溶解氧可以间接表示水体的质量。肠球菌:肠球菌是一种指示生物,其存在决定了水质的恶化。肠球菌是粪便链球菌的一个亚群。肠球菌对各种温度和 pH 的抵抗力使其成为实验室水样分析的理想高效细菌。
生物膜(BF)生产代表了一种细菌在不利条件下生存并增加其在宿主中的生存成功的策略[1]。不利的疾病可以诱导细菌从自由浮动(浮游生物)转化为梗塞细胞,从而获得粘附,成长和形成在生物或非生物表面上的社区的能力[2,3]。这种生理代谢的变化通过特定的细胞 - 细胞通信机制(称为Quorum Sensing(QS)[4])影响整个细菌群落。因此,细菌群体将其代谢活性与细胞外聚合物物质(EPS)分泌,包括脂质,多糖,蛋白质,细胞外核酸(EDNA)和离子[5] [5]。在此细胞外基质中,细菌会增加对干燥,抗菌剂和宿主免疫系统作用的耐药性[6]。这种控制的合作经常涉及不同的细菌物种,导致多数菌BF [7-10]。BFS中的细菌在生长,毒力,持久性和抗菌耐药性(AMR)方面获得了共同的好处[11]。由于水平基因转移的频率和速度较高,BF细胞外基质可以视为抗生素耐药基因扩散的热点[12]。因此,BFS可以充当多种耐药性(MDR)细菌的储层,通常与严重疾病和死亡有关[11]。疾病控制和预防中心估计每年有超过200万个与MDR细菌有关的死亡和23,000例死亡[13]。其中,eSkape(肠球菌肠球菌,金黄色葡萄球菌,克雷伯氏菌肺炎,acinetobacter baumannii,baumannii,pseudomonaseudomonaseudomonaseuginosa和entobacter coptem 已包括六种高毒和抗生素的MDR细菌。 与相关的感染已包括六种高毒和抗生素的MDR细菌。与
摘要作为氮循环中的关键中间体,亚硝酸盐参与了多种生物学途径,这些途径调节了海洋中氮的分布和可用性。在贫营养的回旋中,亚硝酸盐在舒适区的底部附近积聚,表现为最大地下,称为原发性亚硝酸盐最大值;而在亚极区域,亚硝酸盐浓度在近地表海洋中升高。到目前为止,控制这种子午线模式的机制尚不清楚。在这里,我们介绍了从亚热带Gyre延伸到北太平洋亚亚北方阵线的亚硝酸盐生产和消费速率的垂直分析曲线。我们的结果表明,在该盆地中亚硝酸盐的纬度分布受浮游植物 - 氮硝基相互作用的变化的影响。在光线充足的贫营养表面中,浮游植物通过耦合释放和重新仿真占主导地位的亚硝酸盐循环;在舒适区的下方,亚硝酸盐氧化剂的光应力减弱会导致快速离职和限制亚硝酸盐。相比之下,在硝酸盐浓度升高的亚极区域中,在同化硝酸盐还原过程中释放亚硝酸盐,而植物浮游生物和硝化剂之间的氨含量则是放松的,从而促进氨氧化。这些过程,以及氨和亚硝酸盐氧化剂的差异光灵敏度,允许亚硝酸盐的净积累。此外,我们证明了尿素氧化在形成原发性亚硝酸盐最大值并平衡海洋硝化步骤时的实质性贡献。我们的发现揭示了对海洋中亚硝酸盐循环和分布的物理生物互动控制,并有助于解散浮游植物 - 微生物相互作用对海洋氮生物地球化学的复杂作用。
对地球表面海洋的高光谱光学观察到空间的一种手段,可以提高我们对海洋生物学和生物地球化学的理解。NASA的浮游生物,气溶胶,云,海洋生态系统(PACE)卫星任务,其中包括高光谱海洋色仪器(OCI),将提供表面海洋的辐射测量,并在近乎uv to to Nir范围内进行接近连续的光谱分辨率。在卫星海洋彩色任务的一生中保持舒适的准确性需要一个适合系统的替代校准(SVC)和产品验证的程序。系统替代校准过程将卫星传感器数据与原位辐射/光学测量结合在一起,以消除由于卫星辐射传感器校准和大气校正的组合误差而导致的潜在偏差。因此,需要高精度,高光谱分辨率内部辐射测量值,以提供卫星衍生产品的主要真实来源。为满足需求,已经开发了一种新型的原位辐射系统,称为HyperNAV,并经过了严格的特征并测试了领域。HyperNAV的关键属性是耦合到单个光谱仪的双向上升辐射头,光谱分辨率在320 - 900 nm上〜2.2 nm(全宽度,半最大),用于黑暗测量值的集成快门系统,以及集成的倾斜和压力传感器。本文介绍了HyperNAV设计,原位操作模式和验证结果。HyperNAV操作模式包括传统的专业填充和表面模式,以及与自主的专业填充层集成以进行无关紧要的部署,为自主平台网络提供了新的能力,以支持长期的长期需求,以实现高光谱海洋远程远程远程感应。
摘要:棱皮龟 Dermochelys coriacea 是全球濒危物种。本研究追踪了 30 只在加勒比海巴拿马繁殖地(博卡斯德尔托罗 San San Pond Sak 保护区)被标记的北大西洋种群个体,追踪时间长达 3 年。我们使用卫星遥测技术研究了海龟在迁徙和觅食行为状态之间切换的可能性,这些行为状态与环境变量有关。我们绘制了这些海龟的广泛迁徙路线,并使用遥感数据(包括叶绿素、生产力和海面温度 (SST))对其进行了分析,以评估这些数据如何影响它们的迁徙和觅食行为。我们还考虑了海洋过程,即与海龟迁徙路径相吻合的中尺度涡流,以了解它们的行为反应。我们的观察表明,虽然一些海龟进行了大规模迁徙,迁徙到东北和西北大西洋的高利用率地区,但大多数海龟仍留在墨西哥湾边界内。该研究有效地区分了迁徙和摄食行为,指出摄食活动与叶绿素浓度之间存在明显的正相关关系,而生产力只起到了边际作用,并且没有发现对 SST 和中尺度涡流的影响。这项研究促进了对北大西洋棱皮龟迁徙的了解,强调了综合、多学科海洋保护工作的重要性。要了解气候变暖对迁徙路径和食物来源可用性的影响,就需要采取一种整体方法,涵盖物理海洋学的变化、营养动态以及从浮游生物到更高营养级的相互作用。此外,由于棱皮龟穿越不同的国际领土,该研究强调需要合作收集数据以有效保护它们。关键词:San San Pond Sak · 隐马尔可夫模型 · 龟迁徙 · 觅食 · 高使用率区域 · 墨西哥湾 · Dermochelys coriacea
微生物电化学系统可应用于生物修复、生物传感和生物能源,是生物、化学和材料科学中一个快速发展的多学科领域。由于这些系统使用活微生物作为生物催化剂,因此了解微生物生理学(即生物膜形成)如何影响这些电化学系统非常重要。具体而言,文献中缺乏评估生物膜对介导电子转移系统中代谢电流输出影响的研究。在本研究中,荚膜红杆菌和假单胞菌 GPo1 被用作模型,它们是通过可扩散的氧化还原介质促进电子转移的非致病菌株。一氧化氮作为一种气态信号分子在生物医学中引起了人们的关注,在亚致死浓度下,其可能会增强或抑制生物膜的形成,具体取决于细菌种类。在荚膜红杆菌中,一氧化氮处理与电流产量增加和生物膜形成改善有关。然而,在 P. putida GPo1 中,一氧化氮处理对应着电流输出的显著降低,以及生物膜的分散。除了强调使用电化学工具来评估一氧化氮在生物膜形成中的影响外,这些发现还表明,基于生物膜的介导电子转移系统受益于增加的电化学输出和增强的细胞粘附,与浮游生物相比,这有望实现更强大的应用。© 2023 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据 Creative Commons 署名非商业性禁止演绎 4.0 许可证 (CC BY- NC-ND,http://creativecommons.org/licenses/by-nc-nd/4.0/) 的条款发布,允许在任何媒体中进行非商业性再利用、发布和复制,前提是不对原始作品进行任何形式的更改并正确引用。如需获得商业再利用许可,请发送电子邮件至:permissions@ioppublishing.org。[DOI:10.1149/1945-7111/acc97e]
摘要这项研究的目的是评估体外Camellia sinensis(绿茶)植物提取物的抗真菌活性和细胞毒性,并评估两种念珠菌菌株对两性霉素B和氟康唑的抗真菌作用。从HIV阳性患者的口腔中分离出来。使用绿茶提取物和抗真菌剂的系列稀释液在浮游细胞中测定最小杀真菌浓度(MFC)和最小抑制浓度(MIC)。确定在MIC和MFC处的提取物浓度后,为每个应变制备生物膜。评估了小鼠巨噬细胞中的细胞毒性(RAW 264.7),以评估该物质的细胞活力。菌落形成单元(CFU/ML),并使用Mann-Whitney检验(P <0.05)对数据进行了统计评估,用于生物膜,MIC和MFC的视觉观察以及ANOVA和Tukey的细胞毒性。结果表明分析细胞中绿茶提取物的生存能力。在这项研究中得出结论,Sinensis(绿茶)提取物在浮游生物细胞和生物膜中显示出对所有评估的念珠菌菌株的抗真菌活性,对RAW 264.7没有细胞毒性作用。氟康唑在浮游细胞中表现出杀真菌作用,而两性霉素B对白色念珠菌菌株和非白色念珠菌菌株中的微生物抗性表现出抗真菌作用。关键字:两性霉素B;生物膜;山茶花;念珠菌;氟康唑。Iseladas da Cavidade Bucal De Pacientes HIV Potivos。apósdesioninçãodadaconcentraçãododo na cim e na cfm,foi preparado o Biofilme de cada Cepa。摘要这项工作的目的是评估山茶花蔬菜提取物(绿茶)的体外抗真菌活性和细胞毒性,并评估22个Candida SPP中两性霉素B和氟康唑的抗真菌作用。在绿色和抗真菌茶提取物的系列稀释液中确定了浮游细胞中最小杀菌剂和最小杀真菌浓度(CFM和CIM)。细胞毒性,以验证该物质的细胞活力。随后,使用Mann Whitney测试(P <0.05)对生物膜进行了统计评估菌落形成单位(UFC/ML),CIM和CIM和CFM,ANOVA和TUKEY的视觉观察,用于细胞毒性。结果表明,分析的细胞中绿茶提取物的生存力。在本研究中得出结论,C. sinensis(绿茶)提取物在评估的所有念珠菌菌株中具有抗真菌活性,生物膜具有抗真菌活性,并且对RAW 264.7没有细胞毒性作用。氟康唑对浮游细胞具有杀菌作用,而两性霉素B对白色念珠菌具有抗真菌作用,而非阿尔比科则具有微生物耐药性。关键字:两性霉素B;生物膜;山茶花;念珠菌;氟康唑。
讲座主题简介:生物地理平衡理论的核心法律,规则和概念:岛屿生物地理学:面积,距离(救援效应)的影响以及时间对物种丰富度,分裂和放松时间的时间减少(超饱和)。依次与机会,基因流,遗传漂移,遗传瓶颈,自然选择,竞争,特征位移,自适应辐射,替代性和大陆漂移,同种和同胞形成。流行,国际大都会,两栖动物,热带淹没。应用:保护,气候变化,入侵物种。测量生物多样性,将总结测量生物多样性的最基本方法,包括测量相对丰度,丰富度,优势和偶数的衡量,以及如何调整估计丰富度中的采样变化。可以使用等级定序方法比较物种组成。然而,生物地理(和生态)数据分析通常使用多变量群集数据分析,其中每个物种都是变量,数据是“分类”(即,不是数值,因为每个物种都是不同的)。数据可以显示在表,树状图和MDS图中。物种特征可用于重新分类有关其生态功能的组合。海洋生物学 - 各种各样的生活方式海洋生物多样性与在土地和淡水上的生物多样性形成鲜明对比,并且具有许多地方性的门和阶级,以及许多复杂的生活新家,包括许多物种的浮游生物幼虫(和鸡蛋)。珊瑚,海草,海藻,贝壳床)将被引入以下讲座的基础。本讲座介绍了海洋生物的多样性,如何出现的方式以及物种特征(例如,体型,分散)如何影响其分散和生物地理学。主要的海洋物种公会,包括植物和动物园,尼克顿,连钉和久坐的动物群,沉积物Infauna和生物栖息地(例如,海洋环境和生物地理障碍本讲座将首先回顾整个海洋和深度的环境模式。它将考虑这些当前条件如何影响物种的丰度和进化,从而呈现物种丰富性和极端性的模式。此外,大陆漂移,过去的冰川灭绝和大规模灭绝如何影响当今的生物地理学。在海洋中散布物种的障碍可能在哪里?这些概念将与它们在土地上的应用形成对比。海洋物种丰富度梯度本讲座将物种当前的丰富度与全球地理,深度和纬度梯度相提并论,并将其与先前引入的环境变化进行了比较。我们最近的研究是在三维中绘制海洋生物群落(植物生命形式)和生态系统(环境定义)。然后,讲座考虑了岛屿生物地理理论,中域模型,融洽的规则和贝耶尼克的规则(=贝斯 - 贝斯假说)如何有助于解释观察到的模式。海洋种类的流行性具有两个部分。一个地区独有的物种数量;以及这些物种是一个地区所有物种的百分比(=%流行性)。我们的研究最近在全球绘制了海洋物种的流行性。如何进行此操作,并将解释其发现。与丰富性相比,它表明物种扩散的障碍(即vicariancience)。新西兰和南极分别具有任何国家和大陆的流行百分比。当前的研究以了解其他环境因素如何在这些“流行性领域”之间引起界限。
钢筋混凝土结构——“通过形状体现力量” HM Pawar O'shell 先生:一般来说,钢筋混凝土结构应始终保持 150 毫米的钢筋间距标准。在本例中,学生们仅凭对力线的理解,就将结构顶部的钢筋间距增加到了 750 毫米。O'shell 没有任何高科技生产系统,而是依靠人类机器人(学生和非熟练工人的手)的想法。从设计概念化到结构施工,再到项目最终完成,整个建造过程在 20 个工作日内完成。印度蒂鲁吉拉帕利 CARE 建筑学院的学生创造了“o'shell”原型,以探索形式与力的关系。该实验项目旨在促进重要的动手体验,同时以直观和有趣的方式建立对基于张力的曲面结构的理解。在导师 balaji rajasekaran (dmac 组) 的指导下,这项工作成为学生程序设计模块的一部分。o'shell 项目是一项现场练习,让学生有机会根据现场参数创建建筑响应。这包括决定结构的方向、基础网格和初始框架。这项实验还让学生有机会看到整个工作,从最初的设计开发到结构的实现。施工过程的第一步是挖掘地面以形成底座梁。此后,学生们一起搭建钢结构。通过利用钢的抗拉性能,该项目采用了非标准/非线性过程,以现场主动弯曲作为设计驱动力,无需任何模板或模板来固定混凝土或引导几何形状。基础框架是使用现场参数得出的,然后根据团队对应力线方法的理解对钢材进行编织和弯曲,以指导概念结构设计。 B] 钢筋混凝土礁石:邦政府已批准该项目。为了提高鱼类产量并为渔民提供生计支持,将在 Thiruvananthapuram 和 Poovar 渔村附近安装 400 块人工鱼礁。这项耗资 3.75 亿卢比的鱼类产量提高计划是耗资 47.5 亿卢比的 Vizhinjam 修复项目的一部分,旨在恢复即将建成的国际深水海港所影响的渔民并向他们提供补偿。整体结构:两百个整体三角形钢筋混凝土 (RCC) 礁石模块将很快被放入 Kollamcode、Paruthiyoor、Valiyathura、Kochuthura、Puthiyathura、Pallom 和 Adimalathura 渔村附近沿海的海域。另外 200 个钢筋水泥礁模块将安装在该地区更南部的 Poovar 渔村海岸附近。总共将建造一个由 400 个礁模块组成的人工集群。人工礁被认为是附着生物的良好栖息地,附着生物是一群微小的浮游生物,是杂食性和草食性鱼类的主要食物来源。预计黄貂鱼、电鳐、龙虾、鲹鱼、鲹鱼和水蚤将到达这些人工礁石以捕食小鱼。除了提高沿海鱼类的整体供应量外,人工礁石群还将振兴水生环境,充当产卵和育苗场,减少侦察捕鱼时间,并为因特大洪水而流离失所的双体船渔民提供生计
古多样性 - 高山湖的生物多样性对全球变化的韧性:一种未来保护的古生态学方法,该项目建议通过在最后一个CA中跟踪湖泊社区Composi8on的变化来研究生物多样性的弹性。在四个菌群中有2。2.000年,具有应激源压力的史。我们将着重于人为变化(非NA8VE储备,基于牧场的牲畜压力和气候)以及这些变化引起的生物学反应的类型:逐渐或突然。我们将使用Mul8variate ordina8on技术与非线性8ME系列方法(分层概括ADDI8VE模型)相结合,以表征每个湖泊中社区反应的轨迹,并在跨湖中的此类轨迹中保持一致性。该项目将使用一个空间进行8ME方法,并与区域Informa8ON一起使用78个湖泊,并在沉积物记录中分析了Sedadna和Tradi8onal古杂质的代理。尚未详细研究三个压力源对高山湖泊的重视重要性。我们小组的先前结果表明,鱼可能会对生物多样性产生强大的影响,这是在引入小鱼时更高的。我们还表明,可以通过去除非NA8VE鱼类来恢复湖泊。然而,重要的是要知道何时完全恢复了Na8ve生物多样性,并且一旦消除了鱼类,其他压力源对恢复的影响是什么。此外,将环境压力源与湖泊生态弹性联系起来的研究已将侧重于单个SEN8NEN站点,这阻碍了对大型大面积的SPA8同步变化的研究。结果将为未来的Consera8on计划和关键湖泊的SELEC8ON提供专家标准,其对生物多样性Restora8on的兴趣最高,因为它具有最高的恢复Poten8al。博士主管的研究行:该提案的PI,将共同讨论候选人,涵盖了古多样性的主要主题。teresa buchaca是一位古菌学家和羊水学家,从事使用化学生物标志物(有机颜料)的photynthe8c生物社区Composi8ON的变化。她的研究包括在不同的SPA8AL和时间尺度上进行的研究。在区域规模上,她研究了浮游生物蓝细菌和藻类变化的帕兹恩人,以及在高山湖泊中的侵蚀作用。在古生态量表上,她一直在研究晚期系统,以研究如何调节记录的标记色素信号,以消除不同的全球变化压力源的影响(气候,Eutrophica8on和Fiffasions),并了解涉及长期环境变化的机制。,她在研究温带高山和低地欧洲湖泊,复活节岛和阿苏里亚地区的湖泊以及伊比利亚半岛的沿海湿地方面有经验。她正在共同领导一个在High Mountain Lake Assonsa8on上工作的研究小组。Marc Ventura是一名羊水学家和生态学家,在高山湖生态学中,使用不同模型的动物群(来自甲壳类动物,大型无脊椎动物,两栖动物和菲斯),在食品网层或物种水平上工作。他现在正在共同领导一个研究小组,主要是Fifs ristionuc8ons在高山湖的保护区工作。既描述了这些入侵的影响(Consera8on生物学或生态学),又将这种现象研究为局部