可以实施连续检验制度,定期轮换进行特别检验要求,以在 5 年内完成特定特别检验的所有要求。已检验的每个部分(项目)应在检验日期起约五(5)年后再次进行检验。通常每年应完成应检验的部分(项目)。在年度检验时连续逾期三(3)个月或更长时间的项目将不予记入年度检验,也不予签注船级证书。本协会可考虑延长完成检验项目的期限。如果在检验期间发现任何缺陷,应予以处理,直至验船师满意为止。
rs-class.org › regbook › getDocument2 2021年7月2日 — 2021年7月2日 2.4 热交换器与压力容器材料要求 .... Carlo统计方法1、复合概率公式。
油气生产装置、移动式海上钻井装置和固定式海上平台 2 、移动式海上钻井装置和固定式海上平台分类、建造和设备规范第 I 部分 1.2 条“分类”中给出的定义 3 、浮式海上油气生产装置分类、建造和设备规范第 I 部分 1.2 条“分类” 4 以及以下定义和缩写(除非 OGE 规范特定部分另有明确规定)均已采用。
摘要:我们在自由衰减跌落试验中研究了球形浮标的升沉运动。采用综合方法研究浮标的振动,包括实验测量和互补数值模拟。实验是在配备一系列高速运动捕捉摄像机和一组高精度波浪仪的波浪池中进行的。模拟包括三组复杂程度不同的计算。具体来说,在一组计算中,流体体积 (VOF) 方法用于在重叠网格上求解不可压缩的两相 Navier-Stokes 方程,而其他组中的计算基于 Cummins 和质量弹簧阻尼器模型,这两个模型都植根于线性势流理论。实验数据与 VOF 模拟结果具有很好的一致性。虽然准确性较低,但两个降阶模型的预测也被发现非常可信。关于浮标的运动,获得的结果表明,在从大约等于其静态平衡吃水的高度(约为其半径的 60%)释放后,浮标经历了近谐波阻尼振动。进行的分析表明,浮标的吃水长度对振动的频率和衰减率有很大的影响。例如,与平衡状态下半浸没的相同尺寸的球形浮标(即吃水量等于半径)相比,测试浮标的振荡周期大约短 20%,并且其振荡幅度衰减速度几乎快两倍。总体而言,本研究为浮球的运动响应提供了更多见解,可用于优化浮标设计以实现能量提取。
https://doi.org/10.26434/chemrxiv-2022-1csxr-v2 orcid:https://orcid.org/0000-0000-0003-3278-5570不通过chemrxiv对内容进行不同行评审的内容。许可证:CC BY-NC-ND 4.0
如果你接受专业机构的培训,你将失去所需的资格和技能。”上个月的培训课程由 Swiftwater 安全研究所教授,分为两个小组课程,包括课堂教学和在设施西南部的科罗拉多河上的大量时间。在水上培训部分,消防员们参与了几种场景,学习了安全有效的救援技术,以及如何正确使用一些所需的特殊设备,包括救援绳系统、手势、伸手装置、浮袋以及如何使用绳索将救援筏固定到位。“成为消防技术员意味着你有能力真正执行任务,”同时也是培训组织的 Cape 说道。“而成为技术员的方法就是拥有缓解事故的实际经验。”
Ganglioside是控制细胞通信中关键功能的膜脂质筏的功能成分。许多病理涉及筏子神经苷,因此代表了开发创新治疗策略的首选方法。首先讨论了一种疾病(而不是),本综述列出了涉及神经毒剂的主要人类病理,包括癌症,糖尿病以及传染性和神经退行性疾病。在大多数情况下,问题是由于蛋白质与神经节的结合会产生病理状况或损害生理功能。然后,我绘制了蛋白质 - 蛋白质相互作用的不同分子机制的清单。我建议将蛋白质的神经节苷脂结合域分为四类,我将其命名为GBD-1,GBD-2,GBD-3和GBD-4。这种结构和功能分类可以有助于合理化能够破坏所选蛋白与神经节的结合而不会产生不良影响的创新分子的设计。在人脑中表达的神经节剂的生化特异性也必须考虑在阿尔茨海默氏病和帕金森氏病的动物模型(或任何无动物替代品)的可靠性。
Yinson 的绿色氨浮式生产储存卸货 (FPSO),也称为 Power to Ammonia (P2A) FPSO,灵感来自 Power-to-X 概念。P2A FPSO 是一种浮式生产和加工解决方案,可从 100% 可再生资源中生产绿色氨。生产的液氨将储存在船上,可定期卸载到往返天然气运输船上进行运输,从而实现“氨价值链”。
在过去的几十年中,通常称为脂质筏的专业“膜微区”(MM)的概念广泛地影响了质膜的分子生物学。这些胆固醇/鞘脂富的结构域在调节细胞过程中起着至关重要的作用,包括细胞内信号传导,细胞死亡和氧化还原稳态(Simons and Toomre,2000; Mollinedo and Gajate,2015年)。在过去的几年中,MM参与了几种疾病的发病机理,从而导致创新的药理学方法的发展,并特别针对其成分,包括脂质和蛋白质。各种分子之间的特定相互作用使脂质筏具有物理和生化的某些特性。的确,筏假说的物理化学基础是通过对模型膜的几项研究得出的,其中脂质的混合物,类似于外质膜外膜的组成,在液体有序和无序领域中分离具有独特特征的液体(Brown and London,London,1998; Simons and Vaz,2004年)。使用人工膜揭示了不同药物对膜特性的影响,从而为基于膜生物物理特性的修改而建立了新的治疗策略的基础(Peetla等,2009; Knobloch等,2015,2015年)。汀类药物是这种创新方法如何与基于膜胆固醇消耗的经典策略联系起来的理想例子。因此,它们越来越多地用于增强化学治疗药物的递送和效率(Pinzon-Daza等,2012; Di Bello等,2020)。vona等。汀类药物是一类众所周知的降低胆固醇剂,具有多种多效性效应(即胆固醇无关),包括影响人工和生物膜组织的能力(Wang等,2008; Redondo-Morata et al。et al.,2016; galiuls eta; galiuls eta; Al。,2020)。在他的Minireview中,Preta总结了基于改变膜胆固醇/鞘脂含量的癌症治疗策略,以及改变癌症膜双层特性的癌症或厚度,其最终目的是提高对氧化毒性药物和多种抗抗性的敏感性。审查基于抑制其合成,对其摄取和细胞内运输的调节以及在治疗和/或预防某些类型的癌症治疗的可能性,提供有关胆固醇靶向策略的更新。但是,脂质筏的独家特性及其对细胞动力学的重要性,使它们容易受到病原体劫持的影响。的确,与宿主细胞相互作用的许多步骤依赖于宿主脂质筏,在某些情况下,这种相互作用导致微区域的修饰。在细菌感染期间,许多毒素与膜筏相互作用。Yeh等。 报告了弯曲杆菌的弯曲杆菌细胞蛋白静态毒素(CDT)的能力,以降低另外两种脂质筏结合细胞毒素的影响Yeh等。报告了弯曲杆菌的弯曲杆菌细胞蛋白静态毒素(CDT)的能力,以降低另外两种脂质筏结合细胞毒素的影响