ADR:美国存托凭证 API:美国石油协会 ASC:会计准则编纂 BtB:企业对企业 BtC:企业对消费者 CCGT:联合循环燃气轮机 CCS:碳捕获与储存 CO 2:二氧化碳 ECB:欧洲中央银行 EV:电动汽车 FEED:前端工程与设计 FID:最终投资决策 FPSO:浮式生产储存与卸油 FSRU:浮式储存及再气化装置 GHG:温室气体 IAS:国际会计准则 IFRS:国际财务报告准则 JV:合资企业 LNG:液化天然气 LPG:液化石油气 MoU:谅解备忘录 NBS:基于自然的解决方案 NGL:天然气液体 NGV:天然气汽车 NGO:非政府组织 OPEC:石油输出国组织 PLA:聚乳酸 PPA:电力购买协议 ROE:股本回报率ROACE:平均资本使用回报率 SEC:美国证券交易委员会 VCM:可变成本利润率 - 欧洲炼油
摘要 — 世界海洋蕴藏着巨大的能量,是一种很有前途的可再生能源。波浪能转换器 (WEC) 是一种正在开发的技术,可以高效、经济地从海洋中提取能量。WEC 的主要组件包括浮标、电机、储能系统和与陆上电网的连接。由于吸收海浪中的能量是一个复杂的流体动力学过程,因此必须使用动力输出 (PTO) 机制将浮标的机械运动转换为可用的电能。这种转换可以通过使用齿条齿轮系统将浮标的线速度转换为用于转动电机的转速来完成。为了从海浪中提取最多的能量,必须在电机上安装控制器,使浮标与海浪的频率产生共振。对于不规则的波浪气候,可以使用多共振控制器与波浪频谱产生共振并优化 WEC 的功率输出。索引词——波浪能转换器、能量捕获、多谐振控制、可再生能源
ADR:美国存托凭证 API:美国石油协会 ASC:会计准则编纂 BtB:企业对企业 BtC:企业对消费者 CCGT:联合循环燃气轮机 CCS:碳捕获与储存 CO 2:二氧化碳 ECB:欧洲中央银行 EV:电动汽车 FEED:前端工程与设计 FID:最终投资决策 FPSO:浮式生产储存与卸油 FSRU:浮式储存及再气化装置 GHG:温室气体 IAS:国际会计准则 IFRS:国际财务报告准则 JV:合资企业 LNG:液化天然气 LPG:液化石油气 MoU:谅解备忘录 NBS:基于自然的解决方案 NGL:天然气液体 NGV:天然气汽车 NGO:非政府组织 OPEC:石油输出国组织 PLA:聚乳酸 PPA:电力购买协议 ROE:股本回报率ROACE:平均资本使用回报率 SEC:美国证券交易委员会 VCM:可变成本利润率 - 欧洲炼油
■ 胶囊式过滤器包含深度型或褶式 Profile @ 过滤器。Profile Star 过滤器的褶皱相对较深且宽,可轻松处理含有高悬浮固体的流体。这种设计可产生低压差,从而最大限度地减少剪切力并提供较长的使用寿命。
西蒙斯一生都在研究细胞膜,即包裹着人体每个细胞和大多数细胞区的极薄的脂肪分子双层(“脂质”)。凯·西蒙斯在细胞膜的脂质双层中发现了漂浮的脂质和蛋白质纳米组装体,这让他想起了芬兰伐木工人用作顺流漂流平台的木筏——因此得名“脂筏”。西蒙斯展示了这些筏子的迷人特性:它们是流动的、动态的,可以出现和消失。脂筏不仅在信号转导和许多其他膜过程中发挥着重要作用,而且它们还与阿尔茨海默病和艾滋病等许多疾病有关。获奖者凯·西蒙斯说:“我激动不已!”“这个奖项令人鼓舞,我希望脂质和脂质组学将继续促进分子生命科学研究,最终也有助于改善健康和临床表现。” Kai Simons 在海德堡的欧洲分子生物学实验室 (EMBL) 启动了细胞生物学项目,并于 2001 年移居德累斯顿,建立了马克斯·普朗克分子细胞生物学和遗传学研究所。Kai Simons 获得了许多荣誉,包括美国细胞生物学学会的 Keith Porter 讲师称号。他获得了日内瓦大学、奥卢大学和库奥皮奥大学(芬兰)和鲁汶大学(比利时)的荣誉学位。Kai Simons 也是一位连续创业者。他目前的企业 Lipotype GmbH 开发了一种新型脂质组学平台,可用于个性化医疗、功能性食品以及新型皮肤病学和化妆品。最重要的是,Lipotype 提供的血脂组学有望为个性化健康和医疗带来诊断突破。
您会在图 4 中注意到,许多特征(例如断层、堤坝、主要岩层和水道)都呈西北/东南、东/西或东北/西南走向。伊尔干克拉通主要岩带呈西北排列,反映了其形成过程,当时板块上的“筏状”陆地相互碰撞,形成了被花岗岩侵入的片麻岩带。与这些事件相关的应力导致整个克拉通的粗面岩堤坝开裂和侵入。这些堤坝可能是具有当地重要意义的土壤材料(例如 Binneringie 堤坝),并且经常与镁铁质红土脊有关。
摘要 本文介绍了一种高增益运算跨导放大器结构。为了实现具有改进的频率响应的低压操作,在输入端使用体驱动准浮栅 MOSFET。此外,为了实现高增益,在输出端使用改进的自共源共栅结构。与传统的自共源共栅相比,所用的改进的自共源共栅结构提供了更高的跨导,这有助于显著提高放大器的增益。改进是通过使用准浮栅晶体管实现的,这有助于缩放阈值,从而增加线性模式晶体管的漏极-源极电压,从而使其变为饱和状态。这种模式变化提高了自共源共栅 MOSFET 的有效跨导。与传统放大器相比,所提出的运算跨导放大器的直流增益提高了 30dB,单位增益带宽也增加了 6 倍。用于放大器设计的 MOS 模型采用 0.18µm CMOS 技术,电源为 0.5V。
本报告总结了 1999 年至 2003 年期间,俄亥俄州立大学土木与环境工程和大地测量科学系 (CEEGS) 的空间大地测量和遥感研究实验室在五大湖开展的三次全球定位系统 (GPS) 浮标活动。本报告重点介绍了过去这些活动中 GPS 浮标操作的现场工作流程,旨在为将来的类似应用提供经验。本报告中的活动包括 1999 年在密歇根湖的荷兰活动、2001 年在伊利湖的马布尔黑德活动以及 2003 年在伊利湖的克利夫兰活动。这些活动的主要目标是利用 GPS 浮标和美国国家海洋和大气管理局 (NOAA) 业务海洋产品和服务中心 (CO-OPS) 提供的现有潮汐仪为多个卫星高度计建立校准站。这些活动为雷达高度计绝对校准、五大湖安全航行的建立以及在空间信息数据库中开发用于沿海管理和决策的综合海岸线信息等应用提供了有用的信息。由于本报告主要关注现场工作程序,因此仅介绍有限的结果。本报告引用了使用这些活动的数据发布的校准结果。一般而言,GPS 浮标的定义是将 GPS 设备放置在漂浮物体上,包括不同类型的浮标,甚至可以是移动的船只。GPS 浮标的使用对于海洋应用而言是一种相对较新的技术,其设计和操作因应用而异。例如,其平台范围从小型救生浮标到自主加固型浮标。但是,本报告仅强调了 OSU 乘波 GPS 浮标,这是这些活动中使用的救生浮标。OSU 乘波 GPS 浮标的设计相当简单:它是通过将带有扼流圈天线的 Dorne/Margolin 元件连接到覆盖有透明雷达罩的 2 英尺(直径)救生浮标顶部而构建的。浮标被拴在船上,接收器、电源和操作员都住在船上。在浮标的四面都做了标记,并在实验室中仔细测量它们与天线参考点 (ARP) 的偏移量。操作员需要根据这些标记观察水面,以便准确地将 ARP 指向水面。实地工作结束后,浮标数据使用差分 GPS (DGPS) 在动态模式下进行后处理。活动相关文件,包括国家大地测量局 (NGS) 数据表、GPS 站观测日志、能见度障碍图、活动提案和实地工作日志,附于附录中。
特征▪闭合头,浮顶样式,可旋转▪简单且安全:一个键操作概念,用于控制所有工具功能▪舒适且安全的单手操作,这要归功于具有2个成分的塑料外壳,带有柔软的抓地力▪轻松工作,因此,由于操作完整时,自动撤回了,当操作通过LED
