SNA Tourville号的首次海上航行标志着该舰海上试验的开始,是梭子鱼计划的关键一步。这一里程碑的实现是在潜艇于 2023 年 7 月从瑟堡海军集团建造大厅转移到发射设施以来进行的完工工作和一系列码头测试之后实现的。在对船上安装的设备进行测试后,潜艇在卡钦盆地下水。这些测试可以验证潜艇各个系统和设备的正常运行、水密性以及推进力,以及2024年4月24日核锅炉房的启动(也称为“第一次发散”)。
帕塔克森特河 F-35 综合测试部队 (ITF) 的试飞员计划在实验试飞员协会 (SETP) 东海岸研讨会上就 2011 年 10 月在黄蜂号 (LHD-1) 上进行的 F-35B 初始舰船试验的计划和执行情况进行演讲。在试验期间,两架 F-35B (BF-2 和 BF-4) 完成了 72 次短距起飞 (STO) 和垂直着陆 (VL),同时评估了 F-35B 在 LHD 上的可维护性。最终,所有舰载包络扩展目标均已实现,包括在测试的环境条件和着陆点内清除与 AV-8B 一样强大的 STO 和 VL 风包络。船舶试验是帕塔克森特河 ITF、USS Wasp 和海军海上系统司令部 (NAVSEA) 共同努力的结果,需要搭载近 250 名人员和 140,000 磅专业支持设备。完成试验需要一年多的详细规划。试验的独特元素如下所列,将在演示期间进行讨论:
Kongsberg Geospatial 与 Shield AI 合作,在墨西哥湾国际水域部署了 V-BAT VTOL UAS,进行了为期三天的海上试验。试验测试了飞机在白天和夜晚的各种天气条件下从移动船只快速发射和回收、长续航时间以及密闭空间起降的能力。除了远距离跟踪和识别其他船只外,飞行还进行了各种模拟任务,旨在模拟加拿大海岸警卫队使用无人机的真实情况。这些包括定位和跟踪模拟残骸或漏油的染料斑块,以及在波涛汹涌的大海和各种天气条件下定位救生圈。V-BAT 操作员使用 Kongsberg Geospatial 的 IRIS UxS 软件在距离发射船远距离安全地驾驶飞机。 IRIS 软件提供了作战空域的全面态势感知图、来自各种传感器的数据和数据馈送,并显示了其他飞机和水面舰艇以及发射船和“本舰”或正在操作的无人机的位置。来自 UAS 携带的摄像头和传感器的传感器数据馈送被实时输入到 Kongsberg Geospatial 模块化 ISR 数据分析和存储系统中。MIDAS 系统记录来自 UAS 的视频和其他数据,并充当“任务情报协调员”来查看当前和历史传感器馈送
如您所知,HMS PROTEUS 的海上试验中使用了专门装备的猎鹰和海王直升机。他们在任何一次试验中都无法有效地探测或定位潜艇。完整的报告非常复杂且技术性很强,并且充斥着大量服务术语!但是,我已经与技术服务科主任讨论过,他用以下术语总结了海上试验:船体传感器没有遇到任何问题;“噪声发生器”装置有效地消除了所有外部声发射,并成功处理了使用声纳探测潜艇的所有尝试;在较浅的水域,该装置的延迟响应系统有效地传输了声纳回声,准确模拟了“海床”响应 - 换句话说,寻找 HMS PROTEUS 的船只只记录了海床而不是潜艇。正如预期的那样,她实际上是“隐形的”。__________
第一阶段海上试验。十四天后,伊丽莎白女王号进入因弗戈登港加油,检查传动轴和螺旋桨组件。她于 2017 年 7 月 24 日返回海上,进行速度、机动性、功率和推进力的进一步试验。这些试验成功完成,并决定前往朴茨茅斯,而不是按原计划返回罗塞斯,以保持进度。伊丽莎白女王号于 8 月 16 日成功进入朴茨茅斯海军基地,这距离她离开罗塞斯仅 8 周多一点。她停泊在新装修的皇家公主码头,那里有一个新的岸电设施。计划中的工程阶段正在进行中,第二阶段海上试验计划在秋季晚些时候进行。该部门预计将按照合同规定,于 2017 年底从 ACA 手中接管“伊丽莎白女王号”舰的所有权。
2004 年伊始,美国海军“哈里·S·杜鲁门”号航空母舰在诺福克海军造船厂服役,为期 6 个月的“03/04 增量可用性” (PIA) 即将结束。该舰于 2 月份进行了海上试验,并立即根据新的“舰队响应计划” (FRP) 概念开始了部署间准备周期,这是第一艘从造船厂到部署都这样做的航空母舰。海上试验于 2004 年 2 月 16 日完成,标志着 HST1 的第二次 PIA 圆满结束 - 提前完成且低于预算。一周后,HST 重返海上,进行飞行甲板认证和舰队准备中队 (FRS)/舰载机联队 8 和训练司令部 (TRACOM) 舰载机资格认证作业。与此同时,船员们正在努力提高他们的航海技术和损害控制技能。接下来的两个月包括强化训练和评估,以根据“舰队响应计划”为该舰做好紧急激增状态的准备。量身定制的船舶培训可用性/最终
空中 RaN 和水下 AcN,从而形成一个无缝网络。此外,“先进”声纳浮标可用作获取数据预处理和数据融合的中间步骤,通过此步骤可实现数据缩减。此类数据缩减意味着更短的数据上传时间,这是在敌对地区执行 REA 操作的重要先决条件,因为空中 RaN 节点的长期存在可能会影响任务成功。敌对地区操作表明,“先进”声纳浮标领域必须集成一个可随时添加或抑制节点的网络,即使使用单个“先进”声纳浮标也能执行精简的操作。声学海洋浮标 (AOB) 遥测系统希望满足“先进”声纳浮标的特性。它通过使用标准“IEEE 802.11”WLAN配置集成空中RaN,并使用水听器阵列和声源集成水下AcN。第一个AOB原型在2003年[3]和2004年[4]的海上快速环境评估海上试验中进行了测试。AOB的当前版本于2005年9月15日至10月2日在美国夏威夷考艾岛附近的MakaiEx海上试验中进行了测试,该试验是美国圣地亚哥HLS Research Inc推动的高频计划的背景下进行的。下面将描述AOB设计,讨论主要系统特性,介绍MakayEx AOB工程测试并指出未来的发展。系统设计 AOB 的物理特性,包括高度(1.2m)、直径(16cm)、重量(40kg)和自主性(12 小时),与标准声纳浮标的物理特性相似。但是,AOB 具有高级功能,包括:独立或网络操作;本地数据存储;专用信号处理;GPS 定时和定位;实时数据传输和中继。本节简要介绍 AOB 硬件和软件,并给出“基站”——空中 RaN 节点的主要特性。
FLEX 项目 (3319)(原为海上试验)通过试验高回报计划、技术和概念、舰队作战概念 (CONOPS)、理论以及新战术、技术和程序 (TTP) 来开发新的或改进的作战能力。FLEX 的目标是提出建议的理论、组织、培训、物资、领导力发展、人员、设施和政策 (DOTMLPF-P) 行动变更,重点是非物资解决方案。FLEX 专注于通过旨在提供支持当前作战计划 (OPLAN) 的潜在解决方案的试验来提高作战能力,涵盖战役和战术层面,并涉及军事行动的方方面面,以增强作战能力或填补当前或未来的能力差距。在 2017 财年,项目 3319 移至 0606355N。
空中 RaN 和水下 AcN,从而形成一个无缝网络。此外,“先进”声纳浮标可用作获取数据预处理和数据融合的中间步骤,通过此步骤可实现数据缩减。这种数据缩减意味着更短的数据上传时间,这是在敌对地区执行 REA 操作的重要前提,因为空中 RaN 节点的长期存在可能会影响任务的成功。敌对地区行动表明,“先进”声纳浮标领域必须集成一个可以随时添加或抑制节点的网络,即使使用单个“先进”声纳浮标也能执行精简的操作。声学海洋浮标 (AOB) 遥测系统希望满足“先进”声纳浮标的特性。它使用标准“IEEE 802.11”WLAN 配置集成空中 RaN,并使用水听器阵列和声源集成水下 AcN。第一台 AOB 原型机在 2003 年 [3] 和 2004 年 [4] 的海事快速环境评估海上试验中进行了测试。2005 年 9 月 15 日至 10 月 2 日,在美国夏威夷考艾岛附近的 MakaiEx 海上试验中对 AOB 的现行版本进行了测试,此次试验是在美国圣地亚哥 HLS Research Inc 推动的高频计划的背景下进行的。下面将描述 AOB 的设计,讨论主要的系统特性,介绍 MakayEx AOB 工程测试,并指出未来的发展。系统设计 AOB 的物理特性在高度(1.2 米)、直径(16 厘米)、重量(40 公斤)和自主性(12 小时)方面与标准声纳浮标相似。然而,AOB 具有先进的功能,包括:独立或网络操作;本地数据存储;专用信号处理;GPS 授时和定位;实时数据传输和中继。本节简要介绍了AOB硬件和软件,并给出了“基站”(空中RaN节点)的主要特性。
Nereus车辆将使科学家能够探索海洋的偏远地区,例如在极地冰盖和深沟下,深度为10 972m(36 000英尺)。技术限制阻止了常规,对这些远程区域的经济有效访问,而最后的4500m海洋仍然在很大程度上尚未探索。深度潜水的新解决方案。Nereus Hybrid远程操作的车辆(HROV)是为单个系统探索和研究需求而设计的。它可以用作海底调查的自动驾驶汽车,也可以在束缚/ROV模式下以样品或深海动物的方式操作。在单个巡航部署期间,HROV NEREUS在其两种操作模式之间进行了hrov nereus转换。NEREUS的海上试验于2007年11月在2500m的夏威夷群岛进行。此处报告了车辆的概述及其初步试验的结果。