摘要 我们估计了卫星反演的北极海冰厚度、海冰体积及其趋势的不确定性,这些不确定性源于缺乏可靠的雪厚度观测。为此,我们在由大气再分析强制进行的海洋模型模拟中模拟了 Cryosat2 型冰厚度反演,假设只有干舷是已知的模型输出。然后,我们使用不同的雪气候学将干舷转换为海冰厚度,并将得到的海冰厚度反演结果相互比较,并与再分析强制模拟的实际海冰厚度进行比较。我们发现,不同的雪气候学会导致获得的冰厚度和冰体积存在显著差异。此外,我们表明,使用任何积雪深度气候学通过冰厚度反演得出的北极冰量趋势都是非常不可靠的,因为冰量的估计趋势可能受到被忽视的积雪量年际变化的强烈影响。
通过应用所选方法测试和验证建模框架的功能。对模拟弹塑性和脆性材料裂纹扩展的新方法的进展进行了全面的文献综述,得出了三种方法,迄今为止,这三种方法已引起数值计算界的极大兴趣。这些方法是:Trefftz 方法、无单元伽辽金方法 (EFGM) 和扩展有限元方法 (X-FEM)。选择了实施和验证后两种方法的商用结构分析软件程序:LS-DYNA。开发了用于生成 LS-DYNA 输入数据格式的模型定义和场景条件的预处理器。它生成经典有限元方法 (FEM)、EFGM 和 X_FEM 所需的数据输入。该预处理器还促进了涵盖设计空间或研究领域的批量执行过程。EFGM 对模型网格定义的要求超出了可用硬件和软件许可证数量的限制;求解器对一个案例的估计运行时间超过 58,000 分钟。因此,仅测试了 X-FEM 并将其与 Baseline FEM 进行了比较。所得结果显示了使用 X-FEM 的优势,可通过该方法定义的丰富元素获得更好的裂纹扩展分辨率;而 Baseline FEM 仅限于沿预定义元素边界建模裂纹扩展。研究结果只能用于比较标准 FEM 和 X-FEM 方法。这两种方法的相对比较表明,前者对于不需要高精度的冲击裂纹扩展路径的研究和分析已经足够;对于需要准确预测裂纹扩展的情况,建议使用 X-FEM 方法。作为此预测建模框架开发的未来步骤,建议使用可靠的实验数据进行彻底验证。
c证明C.1定理3.1和3.2 C.2引理3.4的证明。C.3引理4.1证明。C.4引理证明4.3。C.5引理证明4.4。C.6引理证明4.5。c.7定理4.16 C.8定理的证明4.17 c.9定理的证明4.18 C.10定理5.4 C.11引理证明6.1。C.12引理6.2证明。C.13引理7.1的证明。 c.14定理7.4 C.15定理8.1和8.3 C.16引理证明的证据8.1 .. c.17定理11.1 C.18定理11.2 C.19定理证明的证明证明了定理12.2 C.20的证明。C.13引理7.1的证明。c.14定理7.4 C.15定理8.1和8.3 C.16引理证明的证据8.1 .. c.17定理11.1 C.18定理11.2 C.19定理证明的证明证明了定理12.2 C.20的证明。