对海岸线(水体与陆地之间的接触区)的分析意味着要解决这种边界在时间和空间上的动态性质。位置(自然变化)、测量技术和解释的高度不确定性影响海岸线测绘的准确性。海岸线指标(代表海岸线位置的自然沿海特征)的定义应尽可能满足客观性标准,以便实现海岸线特征遥感的可重复性并改进海岸线测绘技术。本研究的目的是测试基于对象的分类技术在检测和绘制荷兰斯希蒙尼克岛北部沙滩的海岸线指标方面的适用性。高光谱 AHS 图像与实地观察和实验室分析相结合,研究了区分物理海滩隔间的可能性。本研究确定了海滩陆地-水界面的光谱特征。反射率和水含量之间的强量化关系为海岸线指标的定义提供了见解。关于这一点,根据沙子湿度进行了端元选择。在这次选择中,光谱亮度是主要方面。反照率差异被视为 4 种表面沙层光谱特征:干沙、湿沙、湿沙和饱和沙。利用这种光谱特性,使用基于像素的分类器进行类可分性测试,结果证明沙的含水量可用于定义这 4 种水线特征:先前高水线、高水线、瞬时水线和低水线。为了绘制这些边界,应用了一种基于对象的边缘检测算法,称为“旋转变量模板匹配”。RTM 方法在预计要检测的 4 个边界中的 1 个中失败了。从 3 个检测到的边界的结果来看,有理由认为较高的含水量导致了指标的边缘定义。因此,检测海岸线指标的能力将向海方向下降。一个重要的含义是,定时图像采集几乎不会决定定位物理水线的可能性。本研究提出了海岸线指标的图像定义。基于对象的方法的目的是优化准确性和稳健性,这意味着对错误位置的良好定位和区分。通过使用可靠的特征进行检测,海岸线测绘方法得到了优化,其性能优于常见的测绘方法。本研究的结论是,通过仔细定义海岸线指标,可以绘制海岸线边界,并且我们开发的方法能够降低海岸线测绘中的不确定性水平。关键词:海岸线指标,边界、光谱特征、基于对象、土壤湿度、沙滩。
对海岸线(水体与陆地之间的接触区)的分析意味着要解决这种边界在时间和空间上的动态性质。位置(自然变化)、测量技术和解释的高度不确定性影响海岸线测绘的准确性。海岸线指标(代表海岸线位置的自然沿海特征)的定义应尽可能满足客观性标准,以便实现海岸线特征遥感的可重复性并改进海岸线测绘技术。本研究的目的是测试基于对象的分类技术在检测和绘制荷兰斯希蒙尼克岛北部沙滩的海岸线指标方面的适用性。高光谱 AHS 图像与实地观察和实验室分析相结合,研究了区分物理海滩隔间的可能性。本研究确定了海滩陆地-水界面的光谱特征。反射率和水含量之间的强量化关系为海岸线指标的定义提供了见解。关于这一点,根据沙子湿度进行了端元选择。在这次选择中,光谱亮度是主要方面。反照率差异被视为 4 种表面沙层光谱特征:干沙、湿沙、湿沙和饱和沙。利用这种光谱特性,使用基于像素的分类器进行类可分性测试,结果证明沙的含水量可用于定义这 4 种水线特征:先前高水线、高水线、瞬时水线和低水线。为了绘制这些边界,应用了一种基于对象的边缘检测算法,称为“旋转变量模板匹配”。RTM 方法在预计要检测的 4 个边界中的 1 个中失败了。从 3 个检测到的边界的结果来看,有理由认为较高的含水量导致了指标的边缘定义。因此,检测海岸线指标的能力将向海方向下降。一个重要的含义是,定时图像采集几乎不会决定定位物理水线的可能性。本研究提出了海岸线指标的图像定义。基于对象的方法的目的是优化准确性和稳健性,这意味着对错误位置的良好定位和区分。通过使用可靠的特征进行检测,海岸线测绘方法得到了优化,其性能优于常见的测绘方法。本研究的结论是,通过仔细定义海岸线指标,可以绘制海岸线边界,并且我们开发的方法能够降低海岸线测绘中的不确定性水平。关键词:海岸线指标,边界、光谱特征、基于对象、土壤湿度、沙滩。
对海岸线(水体与陆地之间的接触区)的分析意味着要解决这种边界在时间和空间上的动态性质。位置(自然变化)、测量技术和解释的高度不确定性影响海岸线测绘的准确性。海岸线指标(代表海岸线位置的自然沿海特征)的定义应尽可能满足客观性标准,以便实现海岸线特征遥感的可重复性并改进海岸线测绘技术。本研究的目的是测试基于对象的分类技术在检测和绘制荷兰斯希蒙尼克岛北部沙滩的海岸线指标方面的适用性。高光谱 AHS 图像与实地观察和实验室分析相结合,研究了区分物理海滩隔间的可能性。本研究确定了海滩陆地-水界面的光谱特征。反射率和水含量之间的强量化关系为海岸线指标的定义提供了见解。关于这一点,根据沙子湿度进行了端元选择。在这次选择中,光谱亮度是主要方面。反照率差异被视为 4 种表面沙层光谱特征:干沙、湿沙、湿沙和饱和沙。利用这种光谱特性,使用基于像素的分类器进行类可分性测试,结果证明沙的含水量可用于定义这 4 种水线特征:先前高水线、高水线、瞬时水线和低水线。为了绘制这些边界,应用了一种基于对象的边缘检测算法,称为“旋转变量模板匹配”。RTM 方法在预计要检测的 4 个边界中的 1 个中失败了。从 3 个检测到的边界的结果来看,有理由认为较高的含水量导致了指标的边缘定义。因此,检测海岸线指标的能力将向海方向下降。一个重要的含义是,定时图像采集几乎不会决定定位物理水线的可能性。本研究提出了海岸线指标的图像定义。基于对象的方法的目的是优化准确性和稳健性,这意味着对错误位置的良好定位和区分。通过使用可靠的特征进行检测,海岸线测绘方法得到了优化,其性能优于常见的测绘方法。本研究的结论是,通过仔细定义海岸线指标,可以绘制海岸线边界,并且我们开发的方法能够降低海岸线测绘中的不确定性水平。关键词:海岸线指标,边界、光谱特征、基于对象、土壤湿度、沙滩。
对海岸线(水体与陆地之间的接触区)的分析意味着要解决这种边界在时间和空间上的动态性质。位置(自然变化)、测量技术和解释的高度不确定性影响海岸线测绘的准确性。海岸线指标(代表海岸线位置的自然沿海特征)的定义应尽可能满足客观性标准,以便实现海岸线特征遥感的可重复性并改进海岸线测绘技术。本研究的目的是测试基于对象的分类技术在荷兰斯希蒙尼克岛北部沙滩上检测和绘制海岸线指标的适用性。将高光谱 AHS 图像与实地观察和实验室分析相结合,研究区分物理海滩隔间的可能性。这项研究确定了海滩陆地-水界面的光谱特征。反射率和水分含量之间量化的强关系为海岸线指标的定义提供了见解。对此,根据沙土湿度进行了端元选择。在此选择中,光谱亮度是主要方面。反照率差异被视为 4 种表面沙土覆盖的光谱特征:干沙、湿沙、湿沙和饱和沙。利用这种光谱特性,使用最小距离类、基于像素的分类器进行了类可分性测试,证明了沙土水分含量可用于定义这 4 种水线特征:先前高水位线、高水位线、瞬时水位线和低水位线。为了绘制这些边界,应用了一种称为“旋转变量模板匹配”的基于对象的边缘检测算法。RTM 方法在预计要检测的 4 个边界中的 1 个中失败了。从检测到的 3 个边界的结果来看,有理由认为较高的水分含量导致了指标的边缘定义。因此,检测海岸线指标的能力将向海方向下降。一个重要的含义是,定时图像采集几乎不会决定定位物理水线的可能性。本研究提出了海岸线指标的图像定义。关键词:海岸线指标、边界、光谱表征、基于对象、土壤水分、沙滩。基于对象的方法的目的是优化准确性和稳健性,这意味着良好的定位和对错误位置的区分。通过使用可靠的特征进行检测,海岸线测绘方法得到了优化,其性能优于常见的测绘方法。这项研究的结论是,通过仔细定义海岸线指标,可以绘制海岸线边界,并且我们开发的方法能够降低海岸线测绘中的不确定性水平。
附件 A. 机场摄影 SOW B. 项目说明 C. 航空摄影要求 D. SHAPEFILE 要求 E. 沿海制图对象属性源表 [C-COAST] F. C-COAST 词汇表 G. 电子邮件状态报告格式 H. EED 文件检查程序 I. 航空三角测量报告大纲 J. 潮汐协调要求 K. 特征汇编 L. 项目完成报告 M. 沿海测绘程序词汇表 N. 测量磁盘图 O. 地面照片控制 P. 地面测量 Q. 测量表格:Q1 - WDDPROC 打印输出,原件描述 @ Q2 - 标记恢复条目,在线 Q3 - 标记恢复条目,在线(样本) Q4 - NGS 站描述/恢复表 (2p) Q5 - NGS 站描述/恢复表(样本,2p) Q6 - GPS 观测日志 (2p) Q7 - GPS 观测日志(样本,2p) Q8 - NGS 能见度障碍图 Q9 - NGS 能见度障碍图(样本) Q10 - 站铅笔拓印表 Q11 - 站铅笔拓印表(样本) Q12 - 站位置草图和能见度图 Q13 - 站位置草图和能见度图(样本) Q14 - 控制站识别表 Q15 - 控制站识别表 (样本)
很多地貌信息都可以通过古环境重建、历史分析和地貌解释来获得。对于较大的海滩(Chesil & Slapton)和沙嘴(Dawlish Warren),晚全新世继承(距今 7,000 年以前)非常重要。沉积物预算(100 年时间尺度)对所有海滩都很重要。对于沿海滑坡,古代滑坡和过去 100-200 年内滑坡的发生或复发都很重要。我们认为,这种知识不是奢侈品,而是复杂而动态环境中的必需品,因为当今的过程可能无法可靠地指导可能发生的所有变化和响应。事实上,进一步研究的许多要求源于需要更好地定义当代过程和响应(SMP 和各种工程研究相当充分地涵盖了这一点)与地貌演变的长期(50-100 年)趋势(迄今为止尚未充分涵盖)之间的关系。