本文旨在提出一些方案,使电网薄弱的干旱岛屿实现低碳足迹大规模海水淡化。通过这些方案,目标是重新配置并网风能/海水淡化系统,以实现大中型水生产。在此背景下,建议使用锂离子电池进行固定储能,并采用管理策略,以避免风能/海水淡化系统消耗与其连接的传统电网的能源。控制策略是基于确保风电场和电池提供的电力在系统的整个使用寿命期间与海水淡化厂的电力需求保持同步。在确定可再生能源系统的规模时,需要考虑风能的年际变化,并提出估算方法。案例研究以加那利群岛为中心,该地区特别容易受到气候变化的影响,但其风能开发利用具有得天独厚的优势。所得结果显示了所分析配置的最佳风电场和储能系统容量。所提出的方法可实现低碳运营足迹。如果今天实施控制策略,当前的电网限制和在仍然依赖化石燃料的社会背景下进行的系统生命周期评估表明,足迹可能减少 77.4%。然而,当风力涡轮机、电池和海水淡化厂的制造过程从碳中和社会中受益时,剩余的 22.6% 可能会在未来消除。
摘要:水资源短缺是希腊爱琴海群岛面临的一个严重问题。由于旅游业的不断发展,近几年情况不断恶化。目前的水资源管理实践涉及地下水库的开采,导致咸水入侵含水层,许多干旱岛屿的水都是通过海运运输的,成本相当高(在某些情况下达到约 12 欧元/立方米)。海水淡化被认为是解决这一问题的一种方法,许多岛屿已经采用了这种方法,因为这种方法可以以低得多的成本提供所需数量的淡水和饮用水。海水淡化与可再生能源 (RES) 的结合是一种有吸引力且有前途的选择。本文介绍了一个综合案例研究,涉及利普西岛(希腊十二群岛)为满足灌溉和饮用水需求而设计和运行的水能系统。由于海水淡化装置的运行依赖于风力,因此还详细介绍了风速数据合成时间序列的生成。最后,进行成本效益分析,从财务角度讨论我们研究的每种方案。关键词:水资源管理;海水淡化;风力发电;偏远岛屿;成本效益分析;合成时间序列。
本文对海浪能驱动的反渗透进行了分析。市售的海水淡化系统通过 DC/AC 转换器连接到可变 DC 电源,并改变输入电压以模拟可再生能源系统的响应。具体而言,使用了 2015 年肯尼亚基利海的波浪数据。波浪资源变化会导致波浪能转换器的估计功率输出以及波浪能驱动的海水淡化系统的估计淡水产量发生变化。对于基利海,研究了最多三个用于海水淡化的波浪能转换器。此外,还提出了一种包括太阳能和波浪能的混合系统。实验表明,反渗透海水淡化系统可以在低于额定值的功率水平下运行,但淡水流量较低。结论是,波浪能或波浪能与光伏系统相结合,可被视为海水淡化的电源,带或不带电池储存。
汤加的水资源主要以地下水的形式存在。大多数岛屿没有地表水资源;例外是埃瓦岛和一些火山岛,包括纽瓦福乌岛和纽阿托普塔普岛。地下水主要以淡水透镜的形式存在,由于淡水和海水之间的密度差异,淡水透镜形成于石灰岩岛屿的表面之下和海水之上。淡水和底层海水之间没有明显的界面,而是从一种过渡到另一种。过渡区通常比淡水区宽得多。淡水透镜只能在有充足的降雨补给并且岛屿地质构造的渗透性不太高以至于导致补给快速混合到淡水和底层海水的地方出现。
海水电池是一种独特的储能系统,可直接利用海水作为电能和化学能的转换源,实现可持续的可再生能源储存。该技术是一种可持续且经济高效的锂离子电池替代品,其优势在于海水中含有丰富的钠作为电荷转移离子。近几年来,研究显著改善和改进了这种电池的性能。然而,该技术的基本限制仍有待在未来的研究中克服,以使该方法更加可行。缺点包括阳极材料降解或膜在盐水中的稳定性有限,导致电化学性能低和库仑效率低。海水电池的使用范围超过了储能应用。海水电池运行中固有的离子电化学固定也是直接海水淡化的有效机制。高充电/放电效率和能量回收使海水电池成为一种有吸引力的水修复技术。本文回顾了海水电池组件以及用于评估其储能和海水淡化性能的参数。本文还介绍了克服稳定性问题和低电压效率的方法。最后,概述了潜在的应用,特别是在海水淡化技术方面。
美国国家可再生能源实验室 (NREL) 与美国能源部 (DOE) 水力技术办公室 (WPTO) 合作,开发了一种独特的研发方法,以推进海洋能源海水淡化。海水淡化是 WPTO 推动蓝色经济 TM 投资组合 [1] 的一项基础投资,也是该投资组合的首笔投资。NREL 的海洋能源海水淡化涵盖技术经济可行性研究、数值建模和组件和子系统级别的实验室测试,以及液压和电动反渗透波浪能转换器 (HERO WEC) 的开发。这种多层次的方法实现了创新的反馈循环,其中从实验室和现场实验中获得的数据和经验教训可用于改进建模工具和分析技术,确定未来年度活动的优先级,并改进 NREL 和整个 WPTO 投资组合内的战略方向。 NREL 主导的研究的主要目标是确定与波浪能海水淡化商业化相关的关键障碍,并开发海洋能源行业可以采用的解决方案。值得注意的是,虽然 WPTO 的海洋能源组合包括波浪能、潮汐能、洋流能、热梯度能和压力梯度能,但大部分海洋能源海水淡化工作都集中在波浪能海水淡化上。同时,这些研发活动可以帮助为行业和学术技术提供技术援助和支持。这两个轨道有助于建立一个共同的解决方案社区方法,同时也确定了发展强劲行业所必需的海洋部门以外的关键利益相关者、政府机构和其他组织。
摘要 在英国,85% 的家庭依靠天然气进行空间/水加热和烹饪。平均而言,一个家庭每年对天然气供热的需求为 13300 千瓦时。抑制使用此类化石燃料提供能源的需求日益增长,这促使人们考虑涉及可再生能源的替代解决方案。本论文旨在研究太阳能制氢厂,该厂将尝试以氢气的形式提供必要的能源,氢气将用作储存和典型房屋的主要能源。该工厂的特殊之处在于直接使用海水电解来生产氢气。本研究的范围是基础研究和实际应用的结合。该方法涉及分析工作、建模和模拟。结果将显示所需的氢气量、需要使用什么技术来获得更好的性能以及要使用的太阳能电池板数量。这项研究将表明,如果仅使用氢气作为能源,该系统将能够满足约 20% 的能源需求。事实上,与所需的面积相比,屋顶的平均可用面积太小了。尽管如此,如果在不同场景中实施或与热泵等其他技术相结合,天然气节省的能源将达到近 80%。这项研究还讨论了使用海水代替淡水去离子水的后果和好处。对海水电解进行的分析和模拟研究使 AWE 成为进行海水电解的合适技术,并表明当与 8 千瓦的光伏装置结合使用时可以生产 150 公斤氢气。TRITA – ITM-EX 2022:154
工业发展和气候变化促使政府和工业界避免在大陆水域中转,工业规模的海水淡化项目预计将继续进行,以补充现有的生产基础。在西澳大利亚,自 2006 年以来,淡化海水一直帮助珀斯提供饮用水,如今海水淡化占珀斯供水量的三分之一以上。最近,西澳大利亚水务公司正在寻求获得高达 400 兆瓦的可再生风能,为其在阿尔基莫斯的最新项目以及奎那那和宾宁普现有的海水淡化厂提供电力,帮助它们实现到 2030 年减少 80% 的排放目标。第二个例子是必和必拓在南澳大利亚斯宾塞湾上游的海水淡化项目,该项目已开发十多年。该项目建成后将为南澳大利亚的采矿业提供重大支持,该行业目前依赖内陆水源,但这个过程成本高昂,而且受到水质问题的影响。因此,新项目将为满足该行业的用水需求提供更可靠、更经济的解决方案 2 。
使用可持续材料引起了当今世界各地研究人员的关注。这是由于可持续材料的环保,可再生,可生物降解和无毒的行为,这些行为已用于各个部门,例如能源和功率,先进的材料开发,航空,药物输送,组织工程,组织,汽车,防御和腐蚀迁移。1 - 7在腐蚀迁移的地区,近年来,使用植物提取物等可持续材料(例如植物提取物)一直是研究与开发的重点。这是由于植物提取物的无毒行为与碳钢的有毒常规抑制剂相比。8种植物提取物,例如Terebinth的提取物,9个水瓜,10个荨麻叶,11番茄Pomace,12个Piper Guineense,13