随着发展中国家生活质量的提高和全球变暖,全球对空调的需求正在迅速增加。政府间气候变化专门委员会(IPCC)估计,仅住宅空调的需求就将从 2000 年的每年 300 太瓦时 (TWh/年) 上升到 2050 年的 4000 和 2100 年的 10,000(Henley 2015)。其他估计预测,制冷需求将在 2070 年左右超过供暖需求,如图 1 所示(Isaac and van Vuuren 2009)。空调系统的能源成本可能非常高,特别是在岛屿地区,由于依赖液体化石燃料作为主要发电资源,电力成本通常很高。位于温跃层之下的深海是一个几乎无限的吸热器(冷却源),为在海边开发成本较低的区域制冷系统创造了机会。海水空调 (SWAC) 是一种区域冷却技术,利用深层冷海水进行冷却,即使在热带地区,深层冷海水的温度也可低至 3 – 5 °C (美国国家海洋和大气管理局,2018 年),如图 2 所示。人们广泛研究了海洋表面和深层海洋之间的温差,以用于发电和海水淡化目的 (Khosravi 等人,2019 年;Jung 和 Hwang,2014 年;Semmari 等人,2012 年;Odum,2000 年)。SWAC 于 1970 年代开始被考虑,并在 1990 年代初获得了发展势头。它适用于热带和赤道地区,这些地区海底水深测量允许使用相当短的冷海水引水管道 (Syed 等人,1991 年)。 SWAC 取代了传统空调系统中使用的冷却器,大大降低了电力消耗和制冷成本(Makai Ocean Engineering 2015 )。SWAC 系统的电力成本通常比传统空调系统低 80%(Van Ryzin and Leraand 1991;Van Ryzin and Leraand 1992 ),约占 SWAC 总项目成本的 20%(拉丁美洲发展银行 2015 )。这些制冷需求项目应尽可能大,目的是通过规模经济降低项目总成本
由于发展中国家和全球变暖的生活质量改善,世界对空调的需求正在迅速飙升。政府间气候变化委员会(IPCC)估计,仅对空调的需求将从2000年的每年300瓦特小时(TWH/年)上升到2050年的4000,而10,000乘2100(Henley 2015)。其他估计预测,对冷却的需求将设置为2070年左右的加热,如图1(Isaac和van Vuuren 2009)。空调系统的能源成本可能很高,尤其是在岛屿位置,由于液体化石燃料作为主要一代资源,电力成本通常很高。深海位于热跃层下方,是一个几乎无限的散热器(冷却来源),它创造了一个机会,可以开发出较低成本的海洋附近的地区冷却系统。海水空调(SWAC)是一种地区冷却技术,使用深冷海水进行冷却,即使在热带地区(国家海洋和大气管理,2018年),深度在700至2000 m之间的深度可冷来冷却3-5°C,如图。2。已经对表面和深海之间的温度差异进行了广泛的研究,以发电和淡化目的(Khosravi等人。2019; Jung and Hwang 2014; Semmari等。2012; Odum 2000)。SWAC在1970年代开始被考虑,并在1990年代初获得了动力。是针对海底胸腺胸甲允许相当短的冷海水进气管道的热带和赤道区域提出的(Syed等人1991)。 SWAC取代了常规交流系统中使用的冷却器,大大降低了电力消耗和冷却成本(Makai Ocean Engineering 2015)。 SWAC系统的电力成本通常比传统的交流系统低80%(Van Ryzin和Leraand 1991; Van Ryzin和Leraand 1992),其中约占SWAC总项目成本的20%(拉丁美洲开发银行2015)。 这些冷却需求项目应尽可能大,以降低规模经济的整体成本1991)。SWAC取代了常规交流系统中使用的冷却器,大大降低了电力消耗和冷却成本(Makai Ocean Engineering 2015)。SWAC系统的电力成本通常比传统的交流系统低80%(Van Ryzin和Leraand 1991; Van Ryzin和Leraand 1992),其中约占SWAC总项目成本的20%(拉丁美洲开发银行2015)。这些冷却需求项目应尽可能大,以降低规模经济的整体成本
由于水资源短缺和全球气候变化趋势,通过海水淡化获取饮用水正日益成为一种选择,尤其是使用反渗透 (RO) 膜技术。运营反渗透海水淡化厂涉及多项费用和能源消耗,占很大比重。多项研究表明,与其他可再生能源相比,风能的能源成本较低,因此,应成为与 RO 海水淡化系统结合使用以使用可持续能源净化水的首选。因此,在本文中,我们基于模拟模型研究了使用风力驱动 RO 海水淡化系统的可行性,该系统有压力容器储能和无压力容器储能,以及使用 Clark 泵进行小规模能量回收。将两种方案的性能与几种风力模式进行了比较。正如预期的那样,缓冲和能量回收实现了更高的水产量和更好的水质,证明了能量存储/回收系统对于风力供电海水淡化厂的重要性。
该项目专注于可再生能源的最新发展,为埃及偏远地区的一小群人提供淡水,为一家小型反渗透 (RO) 海水淡化厂提供电力。这项工作的目的是估算一个水处理厂所需的最佳能源系统,该水处理厂在恒定的日负荷曲线下使用太阳能和风能等可再生能源之一生产 125 升/小时 (3 立方米/天)。首先,手动计算了反渗透厂每天生产 3 立方米淡水所需的电力,并使用陶氏水和工艺解决方案公司提供的水应用价值引擎 (WAVE) 软件完成了整个工厂的设计。其次,对于太阳能和风能,使用 PVSyst V6.75 软件和手动计算来估算每日能源产量。当然,太阳能和风能是清洁、免费和可再生的能源,这取决于场地位置。由于埃及拥有漫长的海岸线,因此强烈推荐将其作为可再生能源海水淡化厂的理想地点。本研究假定马特鲁港省为该工厂所在地。
摘要:水资源短缺是希腊爱琴海群岛面临的一个严重问题。由于旅游业的不断发展,近几年情况不断恶化。目前的水资源管理实践涉及地下水库的开采,导致咸水入侵含水层,许多干旱岛屿的水都是通过海运运输的,成本相当高(在某些情况下达到约 12 欧元/立方米)。海水淡化被认为是解决这一问题的一种方法,许多岛屿已经采用了这种方法,因为这种方法可以以低得多的成本提供所需数量的淡水和饮用水。海水淡化与可再生能源 (RES) 的结合是一种有吸引力且有前途的选择。本文介绍了一个综合案例研究,涉及利普西岛(希腊十二群岛)为满足灌溉和饮用水需求而设计和运行的水能系统。由于海水淡化装置的运行依赖于风力,因此还详细介绍了风速数据合成时间序列的生成。最后,进行成本效益分析,从财务角度讨论我们研究的每种方案。关键词:水资源管理;海水淡化;风力发电;偏远岛屿;成本效益分析;合成时间序列。
5 有限元方法 53 5.1 简介 53 5.2 基本原理 53 5.3 一维模型 54 5.4 二维模型 55 5.4.1 二维深度积分模型 55 5.4.2 二维横向积分模型 56 5.5 三维模型 57 5.6 特征-Galerkin 方法 58 5.6.1 离散方程的公式 58 5.6.2 两步算法 61 5.6.3 基于特征的方法 62 5.6.4 保守的流体动力学和质量传输方程 64 5.6.5 对流主导问题的精度分析 66 5.7 数值方案的验证 68 5.7.1 高斯丘陵的纯对流 69 5.7.2 高斯丘陵的纯旋转山丘 70 5.7.3 平面剪切流中的平流扩散 71 5.7.4 潮流中的连续源 73 5.7.5 具有二次底部水深的矩形水道中的长波 74 5.8 优点和缺点 76 5.9 原型应用 I:海水养殖管理 77 5.9.1 吐露港的概述 77 5.9.2 动态稳态模拟:M2 潮汐强迫 79 5.9.3 七天的真实潮汐模拟(42 个潮汐分水岭) 81 5.10 原型应用 II:填海对潮流的影响 83 5.10.1 维多利亚港的概述 83 5.10.2 M2 潮汐强迫的水动力学模拟 83 5.10.3 四个主要潮汐分水岭的真实潮汐模拟 86 5.10.4填海工程的效果 86 5.11 结论 89