本文是两者中的第一个,它提出了16年的主题解决方案,该解决方案是沿美国西部14海岸的加利福尼亚电流系统(CCS)的耦合物理学和生物地球化学模型,并验证有关平均,季节性,年间和15个季节性的季节性季节性季节性和较低度的物理解决方案。其伴侣论文是Deutsch等。16(2021a)。目的是构建和演示一种建模工具,该工具将用于17种机械解释,归属因果评估以及对18个循环和生物地球化学的未来进化的预测,并特别关注增加的海洋层构型 - 19 tion,脱氧,脱氧和酸性。CCS循环的良好解决的中尺度(DX = 4 km)模拟20是在1995年至2010年的16年后的21个时期的区域海洋建模系统中进行的。海洋解决方案由高分辨率22(DX = 6 km)的区域配置强迫天气和研究预测(WRF)大气23模型。这两个高分辨率的区域海洋和大气模拟都被横向开放的边界条件迫使24,从较大的域,更粗的父母仿真 - 25本身具有来自Mercator和气候预测的边界条件26 System System Reanalyses。我们在模拟的大气27强迫海洋和卫星测量的空间模式的强迫和暂时变化的强迫之间表现出了良好的一致性。然后用卫星和原位测量对模拟的海洋物理29领域进行评估。模拟再现30个气候上升前和跨近岸的等值斜率,31个平均电流模式(包括加利福尼亚潜流)以及季节性,年际,32和亚季节变异性的主要结构。它还显示了中尺度涡流活性与33海洋和大气之间的风能交换之间的一致性。最后,使用高频风强迫35的影响评估了天气风变异性对现实代表海洋36中尺度活动和年龄型惯性电流的重要性。37
冰芯测量结果显示出多种大气中的CO 2变化(减少,减少或保持稳定),呈千禧一代北大西洋寒冷时期,称为Stadials。这些对比趋势的原因仍然难以捉摸。碳富含深海的通风可能会深刻影响大气中的CO 2,但其千禧一代的历史受到限制。在这里,我们提出了过去150,000年的良好高分辨率深度大西洋酸度记录,这显示了迄今为止五种迄今未发现的体型海洋通风模式,对深海碳存储和相关大气CO 2变化产生了不同的后果。我们的数据提供了观察性证据,以表明在大气CO 2显着上升时,强烈且通常广泛的南部海洋通风释放了大量的深海碳。相比之下,其他体积的特征是通过南大西洋和北大西洋的通风弱,促进了呼吸碳的积累,因此减少或逆转了深海碳损失,导致大气中CO 2的升高甚至下降。我们的发现表明,深海碳储存和大气CO 2的千禧年尺度变化是通过两个极性区域的相互作用的多种海洋通风模式调节的,而不是单独的南方海洋,这对于对过去和未来的碳循环调节对气候变化至关重要。
海洋生物地球运动员组碳固隔机制中的碳泵。最初创建了这一问题,目的是解释在全球海洋45中观察到的DIC浓度增加,因此没有考虑有机碳在沉积物中的储存。后来将碳泵应用于海洋碳固换,在这种情况下,其定义包括有机碳转运到海洋内部,可能是沉积物。的确,IPCC 7对海洋碳泵的定义如下:溶解度泵是“一种物理化学过程,将溶解的无机碳从海面传递到其内部[…]的内部[...]驱动,主要由二氧化碳的溶解度驱动(CO 2)[CO 2)[…]和大型,热量,热氢键模式的海洋循环”;碳酸盐泵由“碳酸盐的生物形成,主要是由浮游生物产生的生物矿物质颗粒,这些颗粒沉入海洋内部,可能是沉积物[…]伴随着CO 2释放到周围的水,后来又释放到了大气中”;这是本研究的重点,生物碳泵将POC和DOC运送到“海洋内部,可能是沉积物”。
海洋浮游生物群落形成了食物链底部相互作用生物的复杂网络,并在调节海洋生物地球化学周期和气候方面发挥了核心作用。但是,预测浮游生物社区会随着气候变化的响应而变化仍然具有挑战性。虽然物种分布模型是预测气候变化情景下物种生物地理变化的宝贵工具,但它们通常忽略生物相互作用的关键作用,这可以显着塑造生态过程和生态系统反应。在这里,我们引入了一个新颖的统计框架,关联分布建模(ADM),旨在建模和预测时空中的生态关联分布。应用于塔拉海洋基因组分辨的宏基因组学数据集,目前的生物地理位置摄影是临时海洋浮游生物协会的生物地理学揭示了沿纬度梯度组织的四个主要的生物地理生物群落。我们预测了这些生物群体特定社区的演变,以应对气候变化的情况,突出了对环境变化的差异反应。最后,我们探索了受影响的浮游生物社区的功能潜力,重点是碳固定,概述了其地理分布的预测演变以及对生态系统功能的影响。本文是主题问题的一部分,“相互关联的互动:通过空间和社交互动来丰富食物网研究”。
1995年8月,南方中心成立为一个永久性政府间组织。它由发展中国家成员国组成并负责。它就关键政策发展问题进行了面向政策的研究,并支持发展中国家有效地参与与实现可持续发展目标(SDGS)相关的国际谈判过程。该中心还在其工作计划所涵盖的领域提供技术援助和能力建设。了解到实现可持续发展目标,尤其是消除贫困,需要国家政策和国际政权支持和不破坏发展努力,该中心促进了南方的统一,同时认识到国家利益和优先事项的多样性。
GF管道系统宣布将其海洋业务扩展到印度,越南和哥伦比亚,这是一项战略计划,旨在增强客户支持并扩大市场可持续水解决方案的全球影响力。瑞士流量解决方案专家为船上的水,天然气和化学物质的安全,高效和可持续运输提供了海洋批准的产品。该公司正在投资对海洋专家的广泛培训和技术支持,以满足海洋领域不断增长的需求。与一支专门的团队覆盖了30多个船上应用程序,GF管道系统对创新热塑性解决方案的材料兼容性进行了量身定制的咨询。其海洋投资组合具有符合IMO的严格法规的产品,该法规已获得BV,LR,DNV和RINA等领先当局的批准,可确保可靠性和最佳性能。GF管道系统提供了一套可持续的水溶液套件,包括塑料管道系统(包括管道,配件,阀门和工具)以及诸如压力分析,预制,培训和焊接支持之类的服务。这些解决方案通过减少碳足迹,提供耐腐蚀性并使安装和长期耐用性更轻松,从而提供了与传统金属系统相比的显着优势。客户将能够在即将举行的行业贸易展览会上发现GF管道系统的海洋投资组合,例如2025年3月5日至7日在河内的越野博览会,以及2025年3月12日至14日在卡塔赫纳的Colombiamar。GF管道系统海洋领导人全球负责人óscarOvejero强调了市场扩张的重要性。óscarOvejero强调了市场扩张的重要性。展出的亮点将包括热拟合,这是PE100管道系统Ecofit的耐火解决方案,可为L3应用中的热塑性解决方案提供防火保护,例如压载水和处理或获得专利的热塑性蝴蝶阀565的专利热塑性蝴蝶阀565 LUG风格,适用于板上的水处理和化学应用。“我们认为,我们的完整解决方案方法,包括腐蚀和维护 - 无热塑性组件,全球预制能力,工程和完整的项目支持,可以在行业的可持续性转型中发挥关键作用。因此,我很高兴我们现在能够在印度,越南和哥伦比亚提供我们的产品和服务,从而增加了客户的邻近性。” 30年来,GF管道系统一直是用于海洋应用的热塑性流动解决方案的提供者,从水处理到废气清洗除了管道和配件之外,该公司提供了衡量,控制,自动化和连接设备。热塑性塑料的表现优于较低的碳足迹,可再生材料和轻巧的设计,放松安装和维护。无腐蚀和持续25年以上,它们还提高了能源效率,帮助船只削减了燃料的使用
fi g u r e 2单倍型网络和四种培养的正弦素化种类的单倍型牙齿素(A),Kappaphycus alvarezii(b),K。Striatus(C),K。Malesianus(K。Malesianus(d),K。Malesianus(d),使用MiTochrial sequence cox-3--在单倍型网络中,节点的大小与GenBank中的序列数有关,内圆的颜色与地理起源有关,外圈的颜色表示样品起源(野生,野生本地,野生非本地)。对于地理分布样品,根据其在海洋生态区中的采样位置进行分组(Spalding等,2007年)。请注意,这不一定反映本地多样性,因为分子信息偏向耕种标本,并包括引入标本(有关主要简介事件,请参见图1)
摘要:在数据的空前可用性的驱动下,机器学习已成为行业和科学的普遍性和变革性技术。其对海洋科学的重要性已被赋予了联合国海洋十年的目标之一。虽然收集了增加数量的声学海洋数据以进行研究和监测目的,并且机器学习方法可以实现自动处理和分析声学数据,但它们需要由专家注释或标记的大型培训数据集。因此,解决标记数据的相对稀缺性,除了增加数据分析和处理能力外,还有主要推力区域之一。解决标签稀缺的一种方法是专家在循环的方法,它允许对有限和不平衡数据有效分析。它的优势是通过我们新颖的基于学习的深度专家框架来证明的,用于自动检测Echo Sounder数据中的湍流唤醒签名。使用机器学习算法,例如本研究中提出的算法,大大提高了分析大量声学数据的能力。这将是实现海洋科学中越来越多的声学数据的全部潜力的第一步。
为什么要海洋能量?海洋提供地球上最大的未开发能源之一。潮汐,河流,海洋电流和波浪功率以及温度和盐度的差异可用于产生能量。近年来,全球人口和社会经济增长的增长正在推动全球能源需求的增加。化石燃料满足了大部分需求,这有助于温室气体排放和气候变化。海洋可再生能源资源可以是满足世界能源需求的解决方案之一。这些资源利用了我们海洋的巨大潜力,提供了各种可再生能源。通过潮汐,波浪和海洋热能转化产生的能量(OTEC)是重要的,并且在追求国家的可持续和脱碳能源方面是很大程度上无法探索的可再生能源。