计算机图形学 AlphaFold 是一个神经网络,它通过将蛋白质结构建模和预测为 3D 空间中的图推理问题来创建高精度的 3D 蛋白质结构 14,其中附近的残基定义图的边缘。对表示被编码为图中的有向边(即残基之间的连接)。 NVIDIA Canvas 应用程序 GauGAN 实时将“海浪拍打海滩上的岩石”等文本短语转换为虚拟风景图像。当添加形容词(如“岩石海滩上的日落”)或将“日落”替换为“下午”或“下雨天”时,模型会立即修改图片。 15 类似地,DALL•E 是 GPT-3 的编译版本,它以文本/图像对为输入,根据用自然语言表达的概念的文本描述生成图像。 16 最新的基于 GDM 的文本到图像生成方法是 DALL•E 2 16,17 和 Imagen 18,它们分别能够生成多样化、高质量的艺术和逼真图像。3D-GAN 创建 3D 形状 19,可以在 3D 空间中操作(几何变换),然后缩小到 2D 图像表示。
封面照片:沙质海岸是一种流动地貌,极易受到侵蚀,海平面上升会导致沙丘流动性增加。中间图片描绘的是奈湾(塔斯马尼亚西南部)的海滩和沙丘,其当前的活跃侵蚀状态可能主要是对 20 世纪全球海平面再次上升的反应。然而,沙质海岸并不是唯一一种可能因海平面上升而加速侵蚀的沿海地貌类型。左侧图片显示了康奈利安湾(霍巴特)的粘土砾石半岩化第三纪沉积物的海岸线,由于海浪侵蚀,海岸线在过去几十年中已后退数米。海岸悬崖(右侧图片)是另一种地貌类型,即使在海平面稳定的情况下,它通常也会持续受到侵蚀,并且可能因海平面上升而加速岩石坠落和塌陷。在仅由半石化基岩组成的沿海悬崖上,这一点尤其明显,就像这里描绘的塔斯马尼亚悬崖一样。
封面照片:沙质海岸是一种流动地貌,极易受到侵蚀,海平面上升会导致沙丘流动性增加。中间图片描绘的是奈湾(塔斯马尼亚西南部)的海滩和沙丘,其当前的活跃侵蚀状态可能主要是对 20 世纪全球海平面再次上升的反应。然而,沙质海岸并不是唯一一种可能因海平面上升而加速侵蚀的沿海地貌类型。左侧图片显示了科内利安湾(霍巴特)的粘土砾石半岩化第三纪沉积物的海岸线,由于海浪侵蚀,海岸线在过去几十年中已后退数米。海岸悬崖(右侧图片)是另一种地貌类型,即使在海平面稳定的情况下,它通常也会持续受到侵蚀,并且可能因海平面上升而加速岩石坠落和塌陷。这在仅由半石化基岩组成的海岸悬崖上尤其明显,就像这里描绘的塔斯马尼亚悬崖一样。
摘要:本文提出了一种基于互连模型的模型预测控制(MPC)方法,以最大程度地利用波浪能转换器(WEC)阵列提取的海浪能。在提出的方法中,应用正式均匀的互连模型来表示由任意数量的WEC组成的阵列的动力学,同时考虑了所有WEC设备之间的流体动力相互作用。首先,WEC设备及其流体动力相互作用是在一个相互联系的模型中表示的,该模型描述了各种WEC阵列的网络动力学,其WEC设备的不同空间几何布局部署在SEAFELD中。第二,基于提出的模型,采用MPC方法来实现对WEC阵列的协调控制,以在浮标位置和控制力的约束下提高其能量转化效率。第三,开发了一个硬件(HIL)平台来模拟WEC阵列的物理工作条件,并在平台上实现了提出的方法来测试其性能。测试结果表明,使用互连模型的拟议的MPC方法比经典MPC方法具有更高的能量收获效率。
从佛罗里达群岛到印度洋-太平洋岛屿,浅水珊瑚礁对于健康、有弹性的沿海社区、生态系统和经济至关重要。繁荣的珊瑚礁提供关键服务,包括渔业、旅游和休闲机会,以及强大的海岸线保护,免受海浪、风暴和洋流的侵袭,仅在美国,每年珊瑚礁的价值就高达 34 亿美元 ( 1-2 )。珊瑚礁通过这些服务保护生命、财产和企业,并为 25% 的海洋物种提供栖息地 ( 3 )。因此,珊瑚礁的影响是深远的——无论是内陆还是外海。目前,珊瑚礁正面临着许多全球和地方压力,例如海洋温度升高、海洋酸化、不可持续的捕捞、沿海开发、采掘和休闲用途、污染、营养物输入、雨水径流、沉积和入侵物种。这些压力因素单独和累积起来都会降低珊瑚礁抵抗和从干扰中恢复的能力,如大规模白化、疾病爆发和风暴事件,而据预测,随着全球变暖,这些干扰将会增加 ( 4 )。
[1]面对全球气候变化,数学和统计研究所支持旅行创新研究所,芝加哥大学(伊利诺伊州芝加哥),2022年9月。[2]大气,海洋和地球和卫星冰的行星边界层。卡夫利理论物理研究所,加利福尼亚大学圣塔芭芭拉分校(加利福尼亚州圣塔芭芭拉),2018年6月。[3]针对部分微分方程的局部基于内核的无网状方法。布朗大学(RI普罗维登斯)数学计算与实验研究研究所,2017年8月。 [4] 2014年10月,加利福尼亚大学洛杉矶分校(加利福尼亚州洛杉矶大学)纯净和应用数学研究所的地球物理和天体湍流研讨会,2014年10月。 [5] SIAM在地球科学,工业和应用数学学会(意大利Padova)的数学和计算问题会议,2013年6月。 [6] 2012年12月,加利福尼亚大学洛杉矶分校(加利福尼亚州箭头湖)纯和应用数学研究所IPAM气候建模聚会会议。 [7] ECMWF海浪中的ECMWF研讨会,欧洲中范围的天气预报中心(阅读,英语),2012年6月。 [8] IUGG数学地球物理学会议,国际地球和地球物理学联盟(苏格兰爱丁堡),2012年6月。 [9] 2011年12月,加利福尼亚大学洛杉矶分校(加利福尼亚州箭头湖)纯净和应用数学研究所IPAM气候建模聚会会议。 [10] 12th Wave Workshop,国际波浪研讨会(夏威夷Waikoloa),2011年11月。 [11]布朗大学(RI普罗维登斯)数学计算与实验研究研究所,2017年8月。[4] 2014年10月,加利福尼亚大学洛杉矶分校(加利福尼亚州洛杉矶大学)纯净和应用数学研究所的地球物理和天体湍流研讨会,2014年10月。[5] SIAM在地球科学,工业和应用数学学会(意大利Padova)的数学和计算问题会议,2013年6月。[6] 2012年12月,加利福尼亚大学洛杉矶分校(加利福尼亚州箭头湖)纯和应用数学研究所IPAM气候建模聚会会议。[7] ECMWF海浪中的ECMWF研讨会,欧洲中范围的天气预报中心(阅读,英语),2012年6月。[8] IUGG数学地球物理学会议,国际地球和地球物理学联盟(苏格兰爱丁堡),2012年6月。[9] 2011年12月,加利福尼亚大学洛杉矶分校(加利福尼亚州箭头湖)纯净和应用数学研究所IPAM气候建模聚会会议。[10] 12th Wave Workshop,国际波浪研讨会(夏威夷Waikoloa),2011年11月。[11]
踏上太平洋之旅,人们期待着夏威夷的平静海浪。然而,我最近的旅行并不是一次悠闲的逃离,而是一次深入技术进步和军事准备中心的旅程。自 1995 年以来,我再也没有去过韩国,变化是巨大的,尤其是在韩国的汉弗莱斯营。在令人惊叹的新营地基础设施中,我有幸目睹士兵和陆军部文职人员使用他们在信号学校学到的信号技能执行任务,并运用优秀士官传授的野外技能。在战场上,我们的年轻军官、准尉和士官正在提升我们的信号人员的技能。很明显,这些人不仅仅是在学习;他们正在不断发展,拥抱未来的技术,这些技术无疑将成为现代战场的核心竞争力。当我回顾这段经历时,我清楚地认识到,我们对士兵和陆军部文职人员的教育和培训方法必须随着技术本身的发展而不断发展。我们必须将重点从仅仅精通终端用户设备转移到更深入地了解底层技术原理。这对于我们的高级军士、军官和文职合作伙伴来说尤其重要,他们不仅必须凭借技术实力,还必须具备战略洞察力,以
传感器设计和数据分析技术的进步使遥感系统变得实用,并可用于研究和管理沿海生态系统,如湿地、河口和珊瑚礁。多光谱和高光谱成像仪可用于绘制沿海土地覆盖图、有机/无机悬浮颗粒浓度以及沿海水域溶解物质。热红外扫描仪可以准确绘制海面温度图并绘制沿海洋流图,而微波辐射计可以测量海洋盐度、土壤湿度和其他水文参数。雷达成像仪、散射仪和高度计提供有关海浪、海风、海面高度和沿海洋流的信息,这些信息对沿海生态系统有重大影响。使用机载光探测和测距系统,即使在中等浑浊的沿海水域也可以绘制水深图。由于沿海生态系统具有很高的空间复杂性和时间变化性,因此经常必须从卫星和飞机上对其进行观察,以获得所需的空间、光谱和时间分辨率。需要使用船舶、浮标和现场仪器以及有效的采样方案来校准和验证遥感信息,从而实现可靠的现场数据收集方法。本文的目的是概述可用于沿海生态系统研究的实用遥感技术。
SEQ时间序列。22(左)通过表达相似性排序的相对表达的热图,
随着技术、工业化、现代化和人口增长的迅猛发展,全世界都渴望获得能源,并通过各种方式寻找能源。本世纪对能源的需求和寻找比以往任何时候都更加强烈。能源短缺和气候变化一直困扰着人类,在过去的几十年里,我们开始探索新的可再生能源。海洋因其在生产绿色能源方面的巨大潜力而一直受到各国的关注。本文的目的是简要概述海洋能源开发的技术发展,重点介绍海浪和潮汐两种主要形式的能源。与太阳能和风能等其他绿色能源相比,它们具有许多优势,例如更高的功率密度,从而可以更高效地发电。波浪能和潮汐能更加稳定、可预测且无害,并且可以在白天和夜晚使用。波浪能和潮汐能对我们这一代人来说还很新奇,人们对此感到十分惊讶,但科学家和研究人员却有了新的想法,并改进了波浪能和潮汐能。本文将使我们对波浪能和潮汐能有透彻的了解。人们已经进行了大量研究,并取得了进展,以改进波浪能和潮汐能的利用。此外,本文将帮助我们产生新的思想和概念来生产能源,这可能会在一定程度上启发我们的星球。关键词:可再生能源、海洋能、波浪能、潮汐能。