由 W. A. H auck of the Steel Division 编写,是公共钢铁公司在俄勒冈州沃伦开展的实验性海绵铁项目的历史、描述和进展陈述。在试运行中,大约 2000 吨铁精矿被装入实验性还原装置,得到了从完全未还原到高度还原材料 (第 122 页) 的产品,其中 400 吨平均含有 75% 或以上的金属铁。将少量这种产品制成合理的块状,用于电炉加热,得到了令人满意的操作结果。... 在过去四年中,克莱斯勒公司向武装部队交付了足够的坦克,可装备 100 多个装甲师 (第 109 页),并提供了 86,000 吨备用坦克零件。...美国钢铁公司在总结战时炼钢技术的进步时(第 116 页)认为
电池技术最近已成为全球研究的重点。锂铁磷酸锂(LFP)电池是一种较新的可充电电池类型,由正和负电极材料组成(或等等。2020)。正电极由LFP制成,而负电极主要由铜和石墨制成(Raccichini等人。2019)。锂铁(Li-Fe)电池由于其高能量密度,耐用性,安全性和友善性而在储能扇区中脱颖而出(Wang,2021)。他们还对高温提供了极好的抵抗力,可确保在极端条件下可靠的性能(Li等人2018; Du等。2022)。由电动汽车市场繁荣驱动的Li-Fe电池需求激增预计到2030年将与全球电动汽车销售达到2150万,年增长率为24%(International Energy Agency&Birol 2013)。这种增长有望在2030年到2030年产生500万吨Li-Fe电池浪费,这突显了有效的回收方法的紧迫性,以防止环境损失和资源损失(Beaudet等人。2020)。如果Li-Fe电池没有正确回收,电池浪费中的重金属可能会污染土壤和地下水,对环境和生态系统构成严重威胁(Zhang等人2024)。研究确定了三种主要的回收方法:高温法,水透明和直接
背景:肝癌在全球范围内排名前四名,需要有效且安全的治疗。铁凋亡是由铁依赖性脂质过氧化驱动的一种新型的调节细胞死亡形式,被认为是癌症的有前途的治疗靶标。在这项工作中,我们旨在研究麻醉氯胺酮对肝癌的增殖和铁毒性的影响。方法:通过细胞计数套件8(CCK-8),菌落形成和5-乙基-2'-脱氧尿苷(EDU)分析检测到细胞活力和增殖。铁凋亡是由Fe 2+,脂质活性氧(ROS)和丙二醛(MDA)的水平确定的。通过实时PCR测定法检查了LNCPVT1,miR-214-3p和谷胱甘肽过氧化物酶4(GPX4)的RNA水平。临床肝肿瘤样品,以检测长期非编码RNA LNCPVT1,miR-214-3p和GPX4的水平,并通过Pearson比较测试评估它们的相关性。进行了荧光素酶报告基因测定和RNA下拉,以确定LNCPVT1,miR-214-3p和GPX4 3ʹUTR之间的结合。结果:氯胺酮在体外和体内显着抑制了肝癌细胞的生存力和增殖,以及刺激的铁毒性,以及LNCPVT1和GPX4的表达降低。LNCPVT1直接与miR-214-3p相互作用,以阻碍其作为GPX4海绵的作用。LNCPVT1的耗竭加速了活癌细胞的铁凋亡,而miR-214-3p抑制和GPX4过表达却逆转了这种作用。MiR-214-3p抑制和GPX4过表达也抑制了氯胺酮诱导的细胞生长抑制和铁凋亡。结论:在这项工作中,我们确定氯胺酮抑制了肝癌细胞的生存能力并诱导了铁毒性,并确定了LNCPVT1/ MIR-214-3P/ GPX4轴的可能调节机制。关键字:肝癌,氯胺酮,LNCPVT1,mir-214-3p,GPX4
摘要:致病细菌及其生物膜参与许多人类和动物疾病,并且是抗生素耐药性发展的主要公共卫生问题。已知这些生物膜会诱导慢性感染,用于使用抗生素治疗的经典治疗通常无效。海绵是无孔喂养的海洋生物,以其动态的共生伙伴关系而闻名,并产生了多种微生物,并产生了许多感兴趣的代谢产物。在这项研究中,我们研究了来自壁画中分离出的没有杀菌活性的海绵的不同提取物的抗纤维效果。显示出针对Harveyi Biofim形成的强大活性。此外,其中一种提取物还抑制了V. harveyi的两种群体感应途径。
摘要 — 本文的主要目的是强调另一种先进电池技术分支的潜力——3D 锌海绵电池技术——这项技术在 2010 年代的“锂离子十年”期间被许多人忽视了。3D 锌海绵电池技术已经取得了长足的进步。它最初被认为是一种一次(不可充电)电池技术,过去十年的科学进步使其成为可能,可以制成二次(可充电)3D 锌基电池系统,其特性使其比铅酸电池便宜,与大多数现有的锂离子电池相当。这使其对所有移动和固定式储能应用都具有极大的吸引力。本文将主要讨论 3D 锌海绵电池技术的发展以及与铅酸电池和锂离子电池相比的优势。
您可以做什么 通知 MFH Maintenance 油漆剥落或碎裂。 立即清理油漆碎片。 不要去除油漆或打磨涂漆表面。 每周清洁地板、窗框和窗台以及其他表面。 清洁脏污和灰尘区域后彻底冲洗海绵和拖把头。 儿童更容易接触铅;经常洗手,特别是在吃饭前和午睡前。 保持游乐区清洁。经常清洗奶瓶、奶嘴和玩具。 确保儿童食用富含铁和钙的营养低脂餐,如菠菜和乳制品。饮食良好的儿童吸收的铅较少。
引言当前,科学界将大量注意力集中在由可再生资源获得的材料上,特别是由天然聚合物及其衍生物获得的材料,例如壳聚糖、胶原蛋白和海藻酸盐。这对于生物医学中使用的材料尤其如此,因为需要保持生物相容性和抗菌性,例如组织工程的多孔支架或封装活性物质的基质 [1, 2]。因此,一个有前景的领域是研制用于透皮给药 ( TDL ) 的贴剂,当材料贴在患者皮肤上时,能够扩散到血液中 [3]。脱乙酰基几丁质衍生物壳聚糖是一种多糖,广泛用于制造生物医学材料,包括 TDL 材料,其形式为多孔海绵、微粒、水凝胶和薄膜 [4]。由壳聚糖制成的聚合物多孔海绵是一种特别方便的皮肤接触材料。矿物无机酸和一些有机酸被用作溶剂,用于将该聚合物加工成新形式的生物材料。生产多孔壳聚糖海绵的“经典配方”包括将壳聚糖(1-2 wt%)溶解在稀乙酸溶液(1-2 vol%)中,冷冻和冷冻干燥 [5]。尽管此类材料中的酸含量较低,但接触时皮肤可能会产生过敏反应。因此,开发加工这种聚合物的新方法并寻找新的溶解介质变得极为重要。
摘要:铁是与几个细胞过程有关的必需金属离子。然而,铁的反应性使这种金属离子对细胞有潜在危险,并且需要严格控制其水平。铁的细胞内浓度的改变与不同的神经病理条件有关,包括与脑铁积累(NBIA)的神经变性有关。顾名思义,NBIA涵盖了一类稀有且仍未研究的神经退行性疾病,其特征是大脑中铁的异常积累。NBIA主要是一种遗传病理,迄今为止,有10个基因与NBIA的家族形式有关。在本综述中,在描述了与铁稳态有关的主要机制后,我们总结了有关NBIA遗传形式的病理机制的研究数据,并讨论了铁在此类过程中的潜在参与。出现的情况是,尽管铁超负荷可以有助于NBIA的发病机理,但它似乎并不是大多数病理形式的因果因素。这些病理的发作是由涉及脂质代谢,线粒体功能和自噬活性之间相互作用的过程的组合引起的,最终导致了铁染色质症。