生态系统官能团组成了一组相关的生态系统,这些生态系统具有共同的生态驱动因素,特征和特征的特征。例如,海草草地在海洋领域,陆地领域的热带/亚热带低地雨林,或淡水领域中的自流泉和绿洲。在实践中,这意味着具有既定生态系统分类的国家应与类型学交叉将其生态系统分类交叉。对于来自多个来源分类的国家,类型学可以帮助综合这些数据。对于没有当前生态系统分类的国家,全球生态系统类型学可以作为开发自己的民族分类的起点。
海洋光合作用有助于通过允许海洋植物和藻类从大气中吸收二氧化碳(CO 2)来减轻全球变暖。这些生物使用光合作用将阳光,水和Co 2转化为有机分子,从而释放氧作为副产品。这种机制隔离了大量的碳,将其存储在生物质和沉积物中,尤其是在红树林,海草和盐沼等“蓝色碳”栖息地中。此外,微观浮游植物在海洋表面层中进行大规模光合作用,从而显着助长了这一努力。保护和恢复海洋栖息地对于改善碳封存和防止气候变化至关重要。
海龟已成为海洋生态系统保护的旗舰。在现有的七种海龟物种(绿色,霍克斯比尔,Loggerhead,Turneback和Olive Ridley)中,有5个被国际自然保护联盟(IUCN)宣布濒临灭绝,甚至危及。除了成为人们倾向于和认同的动物外,海龟是世界热带和亚热带地区的沿海和层状生态系统的重要组成部分。海龟在高度人口水平时,对他们作为消费者,猎物和竞争者所居住的海洋系统产生了重大影响。它们是寄生虫和病原体的宿主,景观的表象,营养转运蛋白和修饰符的底物,尤其是通过维持海草床和珊瑚礁。
泰米尔纳德邦(Tamil Nadu)是一个东南州,海岸线沿孟加拉湾延伸1,076公里,其特征是多样化的沿海地面,例如沙滩,红树林,河口和沿海地区(Nazneen等,2022)。这些地区是珊瑚礁,海草草地和湿地,用于广泛的动植物(Ramesh等,2008)。泰米尔纳德邦海岸(Tamil Nadu Coast)正在应对环境挑战,例如侵蚀,海平面上升,资源剥削高以及来自各种来源的污染,包括河流,农业径流,污水和工业排放,捕鱼活动,破坏性捕鱼方法,运输运营,运输运营和乱抛垃圾。这里概述的挑战对沿海环境和相关的生物群都构成了潜在的威胁。
• 永久改变海岸线和水深(海底地貌的深度和轮廓),从而造成死区并永久改变下游的沉积和水交换。这些变化将对构成整个拉姆萨尔湿地生态特征的关键过程和组成部分产生不利影响,并且无法缓解或抵消; • 直接导致潮间带泥滩和迁徙物种觅食区的消失; • 增加整个拉姆萨尔湿地的沉积和浊度; • 增加污染物和外来物种;以及 • 对潮汐制度造成不利影响,潮间带泥滩、海草和其他植被(例如红树林)赖以生存的潮汐制度为迁徙物种和其他受保护动物提供了合适的觅食栖息地和食物网。
自工业革命以来,化石燃料燃烧和土地使用变化已导致二氧化碳(CO 2)的大量排放到大气中。在1850年至2020年之间,人为CO 2排放总计2420±240 GT,相当于陆地生态系统中存储的碳量(2500 GT; IPCC,2023)。当今大气中,大约有50%的发射CO 2仍然存在于辐射强迫,快速的气候变化,全球平均温度的升高以及一套相关的生态,社会和经济后果(例如,Huckelba和Van Lange,2020#15)。为了响应,量化和增强自然C隔离的努力增加了,尤其是在管理和审计可以直接进行的本地尺度上,而C隔离目标不与包括农业和城市定居在内的关键土地使用竞争(Freedman等人,2009年)。随着土地上空间的压力,对海洋环境的碳存储潜力的兴趣已加剧(例如,Nelemann和Corcoran,2009年; McLeod等,2011; MacReadie等人,2017年; Lovelock和Duarte,2019年)。 特别的重点是植被沿海的“蓝碳”生态系统,其中包括红树林,盐木和海草草地,海洋被子植物可以比许多陆地生态系统更具污染和储存碳(McLeod et al。,2011年)。Nelemann和Corcoran,2009年; McLeod等,2011; MacReadie等人,2017年; Lovelock和Duarte,2019年)。特别的重点是植被沿海的“蓝碳”生态系统,其中包括红树林,盐木和海草草地,海洋被子植物可以比许多陆地生态系统更具污染和储存碳(McLeod et al。,2011年)。这些生态系统还提供了多种生态系统服务,包括风暴浪潮保护,海平面上升,托儿所的养殖场,水的清晰度和栖息地(de los Santos等,2020),但在拥有历史悠久的范围的50%的地球上是最受威胁的生态系统,但已有遗失的范围(杜尔特(Duart),却是杜尔特(Duart)的50%。
植物或动物能够直接或间接地改变其自身的物理环境,这一点早在 19 世纪达尔文在蚯蚓研究中就已认识到(参见 Butler 和 Sawyer 2012)。最近,这一现象在生态系统工程的生态理论背景下得到了广泛描述(Jones 等人1994),强调某些生物可以改变其物理环境,并且这些栖息地的改变可以对生物的表现产生反馈效应。例如,海草或盐沼植被通过减缓水流直接捕获细小沉积物(例如Bouma 等人2005 ),而海狸则通过修建水坝间接影响其环境(例如Wright 等人2002 )。在这两个生态系统工程的例子中,栖息地的改变对生物体都有积极的反馈作用。最近,地貌学家也强调
沿海生态系统具有很高的碳封存率。这些系统包括沼泽,海草,潮汐森林湿地和红树林。会计方法仍在精炼方法。总碳通量清单通过将“排放因子”乘以“活动数据”(区域)来起作用。确定了未来的科学和数据资源需求,可以更好地为会计系统提供信息。分析和建模表明,栖息地变化会导致碳的变化,栖息地的变化是海平面上升的结果。海平面上升导致沿海地区从碳水槽切换到碳源。在SLR下对沿海栖息地和蓝色碳的管理建议:增强现有沼泽,考虑沿海计划中SLR的考虑,重新连接淡水湿地以减少甲烷排放。
现有的沿海植被(海草,红树林,盐泥)范围地图和碳固存率从国际文献中得出,以估计奥克兰地区的碳固换率。此外,该项目还完善了由Tidal Research,Niwa和奥克兰大学进行的先前研究,该研究确定了BCE和恢复机会的当前范围,以国家/粗尺度和碳固存率和潜力(基于Australasia中在Australasia中测得的碳序列率)(基于Aoteara的碳序列率)(BULMERASIA中)2024a,Bulmer等。2024b,Stewart-Sinclair等。2024)。具体来说,该项目改善了奥克兰地区的区域空间栖息地图(使用下面详述的精制映射方法),总结了蓝色碳
本文件中的指标正在制定中,需要测试以及利益相关者的验证。本文件中的内容是最终分析评估的基础,应按此方式对待。初步分析表明,使用 BEVTK 时,塞舌尔蓝色经济的经济维度为 4.95 亿美元,占 GDP 的 30.6%,贡献了塞舌尔正规就业的 45%(2018 年数据)。社会维度显示成人识字率高(98%),对鱼蛋白的依赖(58.9 公斤/人/年)和获得水和卫生设施(93%),而 25% 的人生活在贫困线以下,非大学高等院校 20% 的入学学生在 BE 中心。生态维度显示与珊瑚礁、红树林和海草草甸相关的生态系统服务价值 480 亿美元。