本质上,植物面临着许多不利环境所带来的挑战,例如干旱,极端温度和盐度。为应对这些缺点,植物通过积累兼容的溶质(例如溶液糖和一些游离的氨基酸)来适应非生物应激,这通常被视为在压力下保护和生存的基本策略[1]。在这些兼容的物质中,大多数糖不仅在渗透调节中起着作用,还起信号传导作用,例如葡萄糖[2-4],蔗糖[4-6]和三核-6-磷酸盐[7-9]。糖是植物中能量储存的基础和通过植物运输的基础。光合作用后代谢形成了不同类型的糖,并在整个植物的整个生命周期中发挥了许多代谢过程中起关键作用。在植物生长和发育和环境反应的过程中,糖主要充当信号分子,以调节各种生理和生化过程[10]。海藻糖是一种具有特殊的物理和化学特性的非还原二糖,在干燥和冷冻条件下具有强大的水分性能,并且可以替代生物分子表面上的结合水,以改善蛋白质和生物膜的稳定性[11,12]。海藻糖在包括细菌,酵母,真菌和藻类在内的各种生物中广泛发现,以及某些昆虫,无脊椎动物和植物[13]。本综述讨论了海藻糖在调节植物生长以及对非生物压力的反应方面的进步。海藻糖很容易通过压力诱导,刺激植物的分辨机制[14],并且在处理多种非生物胁迫(例如干旱胁迫[15,16],盐胁迫[15,17]和极端温度胁迫[18,19]中起着重要作用。
摘要近年来,可持续和生态粮食生产的发展引起了全球的兴趣。很明显,随着新的整合系统的发展,这种现象正在引起以水产养殖研究的变化。但是,仍然有必要了解综合系统中涉及的不同方面,包括虾和海藻等共培养系统。这项研究评估了绿色海藻作为食物来源对白虾penaeus vannamei肠道细菌群落的影响。虾:仅用颗粒(P)喂食,仅ulva Clathrata(UC),U。Clathrata + Pellet(UCP),仅ULVA LACTUCA(UL)(UL)和U. lactuca + lactuca + pellet(ULP)。在生长和生存方面,与对照(P)相比,ULP和UCP处理之间没有发现显着差异(P> 0.05)。对虾肠的细菌生物群的分析显示,与对照(P)相比,ULP,UL和UC中社区组成的显着差异(P <0.05)。我们发现,蛋白杆菌是所有治疗中最丰富的门,其次是用于UC,UCP和UL和UL和ULP治疗的细菌菌。虾只用海藻U. lactuca(UL,ULP)的rubritalea,lysinibacillus,acinetobacter和bellopopirellula的丰富度明显更高,用于U. Clathrata治疗(UC,UCP),是litoreibacter。对照(P)中颤动的相对丰度更高,显示出UC和UL处理的减少。我们的发现可以更好地了解综合的水产养殖系统,特别是那些利用海藻作为天然饲料来源的水产养殖系统。
摘要:随着成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 (Cas) 系统的出现,治疗性基因编辑变得越来越可行。然而,成功实施基于 CRISPR/Cas9 的疗法需要安全有效地在体内递送 CRISPR 成分,这仍然具有挑战性。本研究介绍了使用电喷雾技术成功制备、优化和表征装载两个 CRISPR 质粒的海藻酸盐纳米粒子 (ALG NPs)。该递送系统的目的是编辑另一个质粒(绿色荧光蛋白 (GFP))中的靶基因。评估了配方和工艺变量的影响。CRISPR ALG NPs 的平均尺寸和电位分别为 228 nm 和 − 4.42 mV。在保持有效载荷完整性的同时实现了超过 99.0% 的包封率。通过衰减全反射傅立叶变换红外光谱法确认了 ALG NPs 中 CRISPR 质粒的存在。测试表明,纳米粒子具有细胞相容性,并成功地将 Cas9 转基因引入 HepG2 细胞中。纳米粒子转染的 HepG2 能够通过在 GFP 基因中引入双链断裂 (DSB) 来编辑其目标质粒,这表明包裹在海藻酸盐纳米粒子中的 CRISPR 质粒具有生物活性。这表明该方法适用于体外或离体生物医学应用。对这些纳米粒子的未来研究可能会产生适合体内递送 CRISPR / Cas9 系统的纳米载体。
讲座 在本讲座中,您将了解细胞外的环境 - 细胞外基质。这是细胞行为中极其重要的组成部分。我们将从自然环境中汲取灵感,并尝试为组织工程重建合成版本。 实验室研讨会 在这个实践课程中,您将学习如何合成基于海藻酸盐的水凝胶珠,包括可以定制哪些属性以达到所需的水凝胶结果。设计的实验结合了调节海藻酸盐凝胶制造的实践经验和使用基本的仪器技术,以了解结构 - 性能关系和相关的水凝胶应用。 后续活动结束几天后,您将收到一封电子邮件,其中包含有关申请和学生体验的信息。
1. 引言 提高药物溶解度、渗透性和生物利用度一直是其商业化面临的主要挑战之一。在这方面,药物输送系统已被开发成一种有前途的方法 [1,2]。随着纳米技术的进步,人们开发出一类新型纳米粒子,它具有多种优点,如提高药物溶解度、减少所需剂量、持续释放药物、靶向输送药物和提高生物利用度 [3,4]。合成 [5] 和天然聚合物 [6,7] 及其组合 [8] 已被用于药物输送。树胶、粘液和多糖等天然聚合物无毒、生物相容性好、价格低廉且广泛可用。在多糖中,海藻酸钠 (SA) 和壳聚糖 (CS) 已被广泛用于输送不同的药物,例如一种新型药物输送系统 [9–14]。SA 是一种可生物降解且生物相容性的天然聚合物,可导致各种药物凝固。 SA 由 (1-4) 连接的-D-甘露糖醛酸 (M) 和-L-古洛糖醛酸 (G) 以各种排列和比例组成。这种生物聚合物可以在二价阳离子(如 Ca 2+ 、Ba 2+ 、Sr 2+ 和 Zn 2+ )存在下形成水凝胶。此类水凝胶结构可以包封药物,可用于设计 DDS(药物递送系统)[15,16]。多项研究集中于开发用于口服药物控制递送的海藻酸钙 (CA) 珠 [17–19]。CS 是一种线性、生物且无毒的多糖,其中 D-葡萄糖胺和 N-乙酰-D-葡萄糖胺单元通过 β-(1-4) 糖苷键连接。CS 可通过部分破坏几丁质来分离。这种天然多糖已广泛应用于 DDS [20–22]。珠粒中 CA 和 CS 的交联可能对医学和药物研究有用。与组成它们的聚合物相比,这种混合系统可以提供更高的稳定性 [23]。CA 和 CS 纳米载体 (CA-CS NC) 在 DDS 中的应用最近引起了极大关注。例如,Nalini 等人合成了 SA/CS 纳米颗粒 (NP) 用于药物输送,从而提高了治疗效果和疗效 [24]。
3从海藻和豆类副产品中提取蛋白质5从微藻产出的可持续成分7解锁海藻的秘密,以增强水产养殖市场9将微藻转换为零净,自然食品 - 阳性食品 - 阳性食品成分11可提供氮气质量的良好数据,并添加了质量的肥料,现在贴有质量的有机肥料,现在是有机肥料,现在是有机化的,现在在富含油脂的藻类的帮助下,用废木酿造生物燃料的16个分子水平20的全球海洋碳循环20多产量的微藻生物填充物用于食物,饲料和香料23藻类喂养的细菌可以使可生物降解的酸奶酸奶25污水脱水的蓝色<
1美国EPA,“ Bromoform”。美国环境保护局。https://www.epa.gov/sites/default/files/2016-09/ documents/bromoform.pdf [2023年6月29日访问]。 2 Kinley等。 (2016)。 “红色大藻山山紫外线是一种有效的天然抗甲烷发育,可在用瘤胃液体外发酵过程中降低甲烷的产生”。 澳大利亚实验农业杂志56(3)。 3 Smith等。 (1962)。 “维生素B12辅酶和类似物的部分合成”。 自然194(1175)。 4 Johnson等。 (1972)。 “反刍动物中甲烷抑制作用的某些影响”。 加拿大动物科学杂志52(4)。 5 Glasson等。 (2022)。 “在饲料中含有含有海藻芦笋的溴化剂的好处和风险,以减少反刍动物的甲烷产生。” LGAL研究64。https://www.epa.gov/sites/default/files/2016-09/ documents/bromoform.pdf [2023年6月29日访问]。2 Kinley等。 (2016)。 “红色大藻山山紫外线是一种有效的天然抗甲烷发育,可在用瘤胃液体外发酵过程中降低甲烷的产生”。 澳大利亚实验农业杂志56(3)。 3 Smith等。 (1962)。 “维生素B12辅酶和类似物的部分合成”。 自然194(1175)。 4 Johnson等。 (1972)。 “反刍动物中甲烷抑制作用的某些影响”。 加拿大动物科学杂志52(4)。 5 Glasson等。 (2022)。 “在饲料中含有含有海藻芦笋的溴化剂的好处和风险,以减少反刍动物的甲烷产生。” LGAL研究64。2 Kinley等。(2016)。“红色大藻山山紫外线是一种有效的天然抗甲烷发育,可在用瘤胃液体外发酵过程中降低甲烷的产生”。澳大利亚实验农业杂志56(3)。3 Smith等。(1962)。“维生素B12辅酶和类似物的部分合成”。自然194(1175)。4 Johnson等。 (1972)。 “反刍动物中甲烷抑制作用的某些影响”。 加拿大动物科学杂志52(4)。 5 Glasson等。 (2022)。 “在饲料中含有含有海藻芦笋的溴化剂的好处和风险,以减少反刍动物的甲烷产生。” LGAL研究64。4 Johnson等。(1972)。“反刍动物中甲烷抑制作用的某些影响”。加拿大动物科学杂志52(4)。5 Glasson等。 (2022)。 “在饲料中含有含有海藻芦笋的溴化剂的好处和风险,以减少反刍动物的甲烷产生。” LGAL研究64。5 Glasson等。(2022)。“在饲料中含有含有海藻芦笋的溴化剂的好处和风险,以减少反刍动物的甲烷产生。” LGAL研究64。
20mM Tris,150mM NaCl,pH8.0,含有1mM EDTA,1mM DTT,0.01%SKL,5%海藻糖和Proclin300。 剂型 : 冻干粉 标签 : N端His和GST标签 来源 : 大肠杆菌 生物体 : 褐家鼠(大鼠)
这款透明油性精华液可瞬间改变您受损的头发和头皮,让它们焕发光彩、滋润滋养。AlgaPūr™* 高稳定性高油酸 HSHO 海藻油有助于保护和恢复每根发丝,控制毛躁,赋予头发光泽,并为皮肤和头发纤维补充水分。这款无硅配方将 AlgaPūr™* 高稳定性高油酸 HSHO 海藻油和椰子油与 Schercemol™* CATC 酯和 Schercemol™* DISD 酯混合,提供透明柔软的质地,同时修复和滋养头发和头皮。Oilkemia™* 5S 聚合物将油变成透明光滑的凝胶,而 Glucate™* DO 乳化剂有助于减少脱水收缩。Hydramol™* PGPD 酯促进水分扩散和产品冲洗。健康头发所需要的一切。将其作为免洗护发素涂抹在头发和头皮上,进行深层护理。
摘要:合成微生物联合体在生物技术应用方面具有巨大潜力。然而,由于竞争动态和物种间生长速度不平衡,实现稳定且可重复的共培养具有挑战性。本文,我们提出了一种有效的微生物包封方法,该方法基于涂有 ε-聚-L-赖氨酸 (εPLL-HB) 的海藻酸盐基核壳水凝胶珠。该方法可确保微生物完全封闭,同时允许特征差异很大的几种微生物在珠内持续生长。与壳聚糖和 α-聚-L-赖氨酸(两种最常用的此类包封包覆剂)相比,εPLL 在避免细胞在不同培养条件下和所有测试的微生物菌株逃逸方面表现出优异的性能,同时允许它们在胶囊内增殖。εPLL-HB 能够构建空间组织的共培养,有效地平衡不同生长速度的微生物之间的种群。此外,εPLL-HB 可防止木质纤维素衍生介质中的有毒化合物,并在 -80°C 长期储存后仍能保持其包封效果和活力。εPLL-HB 具有出色的微生物控制、结构完整性和耐化学性,再加上价格低廉和易于制备,使其成为设计合成微生物联合体的多功能工具,在生物技术过程中具有广泛的适用性。