摘要,安哥拉和纳米比亚附近的沿海地区以其东南大西洋的高产海洋生态系统而闻名。最近几十年,这些地区发生了重大的长期变化。在这项研究中,我们研究了整个年度周期中这些长期变化的可变性,并使用34年(1982- 2015年)的区域海洋模型模拟探索了基本机制。结果揭示了安哥拉和纳米比亚海岸沿海面温度(SST)趋势的明显季节性依赖性,其正面和负趋势交替。安哥拉沿海地区的长期变暖趋势主要是由澳大利亚春季和夏季(11月至1月)的明显变暖趋势解释,而纳米比亚的十年趋势是由于对澳大利亚冬季冷却趋势的平衡和澳大利亚的夏季变暖而产生的。对混合层温度变化的热预算分析表明,这些变化是通过沿海电流的长期调节来解释的。安哥拉变暖趋势主要是通过对极向沿海电流的强化来解释的,该电流将更多温暖的赤道水向安哥拉沿岸运送出来。在纳米比亚之外,变暖趋势归因于西北班格拉电流的减少,该电流从南部到纳米比亚海岸的凉爽水。沿海电流中的这些变化与沿赤道波导沿遥远的季节性沿海被困波的调节有关。这些长期变化可能对当地生态系统和渔业具有重大影响。
摘要国际海事组织(IMO)介绍了有关2020年运输排放硫含量的新法规(IMO2020)。对人为硫酸盐气溶胶的全球降低的气候影响的估计值差异很大。在这里,我们使用UKESM1使用两组气候模型模拟来缩小这种不确定性。使用固定的海面温度大气模拟,我们估计IMO2020全球有效辐射强迫为0.139±0.019 wm -2,并表明大多数强迫均由气溶胶引起的云特性变化。使用耦合的海洋大气模拟,我们注意到云顶液滴数量的浓度和大型交通密度较高的地区的大小发生了显着变化,在北大西洋和北太平洋地区,这些微物理变化转化为云标题的减少。我们表明,IMO2020在2020 - 2029年间,IMO2020平均每年的年度表面温度平均增加了0.046±0.010°C。大约2 - 3年的全球变暖。此外,我们的模型模拟表明,IMO2020有助于解释2023年的特殊变暖,但是需要其他因素来充分考虑它。2023年在顶部 - 大气层上反射的短波辐射的降低也非常大。我们的结果表明,IMO2020的可能性更大,但观察结果却在模拟的变化范围内,而没有减少运输排放。为了更好地了解IMO2020的气候影响,模型对比项目将是有价值的,而社区则等待更完整的观察记录。
在迄今为止使用的海面温度 (SST) 操作处理方法中,在卫星数据影响最小的地方,对 SST 反演算法(通过对卫星测量的辐射与现场观测进行直接回归而开发)的置信度最高,而在卫星数据潜力最大的地方,置信度最低。在卫星记录过程中,现场数据的密度和空间分布发生了显著变化。这些变化可能影响了不同卫星算法的准确性。气溶胶的影响,特别是埃尔奇琼火山 (1982) 和皮纳图博火山 (1991) 的大规模喷发,导致反演的 SST 出现显著偏差和趋势,远远超过了气候监测严格的 0.1 degK.decade -1 要求。虽然 AVHRR Oceans Pathfinder 等再处理工作已成功消除了实际卫星 SST 数据中存在的大部分偏差,但它们在许多领域仍未达到要求;例如,云消除。与从卫星辐射估计 SST 密切相关的两个问题是云检测和表面效应。在云检测中,使用预定阈值可能会影响检测/误报率,因为云状态的变化会影响空间和时间检索误差。更好的方法是将每个观测的确定性级别输入到分析步骤中,作为每个观测的误差极限描述的一部分。在这方面,云检测误差通常是非高斯和非对称的,需要修改分析方法才能产生最佳结果。表面效应(趋肤效应和
摘要。根据其功能范围,模块化软件设计,并行化策略以及实时操作和实验系统中的当前用途来描述模块化和集成的数据同化系统(MIDAS)软件(版本3.9.1)。MIDAS是在加拿大环境和气候变化上开发的,用于运营和研究应用,包括加拿大运营数值天气预测系统的所有大气数据同化(DA)元素。MIDAS的描述范围是加拿大预测系统的一部分,该系统于2024年6月投入运营。该软件被签署为有足够的一般通用,以启用其他DA应用程序,包括大气成分(例如臭氧),海冰和海面温度。除了描述当前的MIDAS应用外,还提供了来自这些系统的结果的样本,以证明其性能与从切换到使用MIDAS软件或其他数字天气预测(NWP)中心的任何一个系统相比。The modular software design also allows the code that implements high-level com- ponents (e.g.observation operators, error covariance matri- ces, state vectors) to easily be used in many different ways depending on the application, such as for both variational and ensemble DA algorithms, for estimating the observation impact on short-term forecasts, and for performing various observation pre-processing procedures.将单个常见的DA软件包用于地球系统的多个组成部分,提供了实用和科学的材料,包括促进未来对DA ap aperaches的研究,这些研究明确包括耦合的连接,包括 -
摘要:理想化的数值研究表明,除了垂直风切变 (VWS) 大小之外,VWS 剖面也会影响热带气旋 (TC) 的发展。进一步了解 VWS 剖面影响的一种方法是研究 TC 与各种剪切相对低层平均流 (LMF) 方向之间的相互作用。本研究主要使用 ERA5 再分析来验证,与理想化的模拟一致,与不同的剪切相对 LMF 方向相关的边界层过程会影响现实世界的 TC 强度和大小。基于对 2004-16 年来自多个盆地的 720 个 TC 的分析,受北半球向左下切变的 LMF 影响的 TC 有利于加强,而向右上切变的 LMF 有利于扩展。此外,与剪切相对 LMF 方向相关的物理过程也可能部分解释 VWS 方向与 TC 发展之间的关系,因为两个变量之间存在相关性。再分析数据的分析提供了其他新见解。其他因素 [内核海面温度 (SST)、VWS 量级和相对湿度 (RH)] 不会显著改变剪切相对 LMF 与强化之间的关系。然而,有关扩张的关系部分归因于各种 LMF 方向的环境 SST 和 RH 变化。此外,SST 对剪切相对 LMF 与强化之间关系的盆地相关变化至关重要。对于大西洋 TC,除非分析仅限于与普遍有利条件相关的代表性样本子集,否则 LMF 方向与强化之间的关系与全盆地统计数据不一致。
摘要:为了提高对影响每月海面温度(SST)变异性的海洋过程的理解,我们分析了社区地球系统模型,第2版,层次结构,其中模型仅在其海洋复杂性程度上有所不同。最现实的海洋是动态海洋模型,作为完全耦合模型(FCM)的一部分。从机械脱钩的模型(MDM)中的下一个最现实的海洋就像FCM一样,但排除了异常的风应力 - 驱动的海洋变异性。最简单的海洋是平板海洋模型(SOM)。将浮力耦合的动态海洋纳入MDM,其中包括SOM中缺乏温度对流和垂直混合,导致到处的SST变量减弱,并且与SOM相比,高纬度和赤道PACIDICE中SST异常的持久性降低。与MDM相比,大多数区域中FCM中的异常风应力 - 驱动的海洋动力学会导致更高的SST方差和更长的持续时间尺度。动态海洋的净作用,作为整体阻尼剂或异常SST方差和持久性的扩增,在区域取决于区域。值得注意的是,我们发现与FCM相比,SST变异性的热力学强迫幅度的大小相比,SOM和MDM配置中海洋模型的复杂性的努力导致了变化。这些变化部分源于海洋变化的混合层深度的差异,并在尝试量化某些海洋机制对模型之间SST变异性差异的相对贡献时应考虑。
图1:海洋雾过程 - 前流大陆或海洋吸气气溶胶作为FCN。通过蒸气的扩散沉积(插图)在FCN周围生长。Kohler(1936)认为,液滴生长需要超过由表面张力和溶质浓度的相对影响确定的临界半径(分别分别增加/降低了液滴蒸气,分别增加/降低)。最小的湍流(Kolmogorov或K)涡流在ABL中的作用,在该ABL中,FCN被嵌入其中,但尚未了解(插图)。请注意,对于空气,K量表和(Obukhov-Corrsin O-C)温度耗散量表的顺序相同,因此在k涡流或立即周围FCN的温度是同质的。产卵液滴会结合和沉降(插图)。贡献上海的过程/现象包括波浪和破裂,夜间对流,湍流和混合,潮汐和电流。相应的低大气现象包括波边界层以及剪切和对流湍流。在空气界面,湍流,质量,动量和气溶胶交换通过波浪破裂和通过[Molecular]皮肤层的恢复而发生,这会燃烧空气 - 海洋相互作用。短/长波辐射(SWR/LWR)和对流过程也影响海面温度(SST)。MABL的重要贡献来自概要和中尺度[对流]系统,包括前部,高和低点,反转,海面和雾顶的加热/冷却,DIEL循环,云,云,湍流和气溶胶。如果存在,则来自边界混合,上升流,升级的波浪破裂,海洋/海洋[差分]加热和内部边界层(IBL)的沿海贡献对雾生命周期有重大影响。
南苏丹是最不发达国家之一,容易受到气候变化造成的损失和社会损害,因为其人民依靠对气候敏感的自然资源的生计。 每个人都受到许多与气候相关参数的波动的影响,包括温度变化和降水速率。 本次审查的目的是调查南苏丹气候变化和洪水的潜在威胁。 海面温度与降雨变异性呈正相关和负相关。 降雨随时间变化;因此,对降雨事件的熟练监控,预测和预警是必不可少的。 严重的气候事件,例如干旱和洪水,是计划和管理所有社会经济活动的关键因素。 过多的降雨可能立即导致洪水破坏农作物和基础设施。 洪水可能会对不同的空间尺度上的粮食安全产生冲突的影响。 已经确定了管理大量径流量的必要性,并采用了十年的降雨数据来适应年度变异性。 降雨时空评估对于水资源管理,农业生产率和气候变化降低至关重要。 关键词:南苏丹,气候变化,洪水,降水。 审查文章收到的日期:2024年4月14日接受日期:2024年5月13日,简介洪水是严重的危险,为了减少损失的生命数量和造成的生计损失,需要适应方法。南苏丹是最不发达国家之一,容易受到气候变化造成的损失和社会损害,因为其人民依靠对气候敏感的自然资源的生计。每个人都受到许多与气候相关参数的波动的影响,包括温度变化和降水速率。本次审查的目的是调查南苏丹气候变化和洪水的潜在威胁。海面温度与降雨变异性呈正相关和负相关。降雨随时间变化;因此,对降雨事件的熟练监控,预测和预警是必不可少的。严重的气候事件,例如干旱和洪水,是计划和管理所有社会经济活动的关键因素。过多的降雨可能立即导致洪水破坏农作物和基础设施。洪水可能会对不同的空间尺度上的粮食安全产生冲突的影响。已经确定了管理大量径流量的必要性,并采用了十年的降雨数据来适应年度变异性。降雨时空评估对于水资源管理,农业生产率和气候变化降低至关重要。关键词:南苏丹,气候变化,洪水,降水。审查文章收到的日期:2024年4月14日接受日期:2024年5月13日,简介洪水是严重的危险,为了减少损失的生命数量和造成的生计损失,需要适应方法。人类的行动,例如洪泛区的发展和缓解洪水基础设施的建设正在改变经历洪水,其特征的地区以及容易受到洪水的特征(Tellman等人,2021年)。改进的观察结果 - 包括更频繁的时间采样和以高空间分辨率覆盖广泛区域的能力 - 需要更好地理解洪水模式。这种信息是必要的,例如,为特定位置正确实施适当的缓解洪水措施。由于缺乏观察数据,对全球洪水遭受灾害的人群的先前估计受到了阻碍,而是依赖高度不可靠的模型。通过使用卫星数据,可以更彻底地估计洪水动态和程度,这反过来有助于确定对全球人口的长期影响。估计中的精确度提高将使几个利益相关者和数值模型所使用的水文模型受益,这些模型提供了泛滥预测,从而降低了此类模型中的不确定性(Downs等,2023)。全球,尤其是在发展中国家,由于气候变化,洪水事件变得越来越普遍。
摘要:我们研究了自1980年以来子午大气热传输(AHT)的线性趋势,在大气重新分析数据集,耦合气候模型和仅被大气中的气候模型与历史悠久的海面性温度强迫的唯一气候模型。AHT的趋势分解为循环的三个组成部分的贡献:(i)瞬态涡流,(ii)固定涡流和(iii)平均子午循环。所有重新分析和模型都同意南大洋的AHT趋势模式,从而确立了该地区的趋势。在Reanalyses的南大洋中,瞬态eDdy Aht幅度有强大的增加,仅大气模型就可以很好地复制,而耦合模型显示出较小的幅度趋势。这表明海面温度趋势的模式有助于该区域的偏差AHT趋势。在热带地区,我们发现模型中平均循环AHT趋势之间的巨大差异和重新分析,我们将其连接到热带降水趋势中的差异。在北半球中,我们发现大规模趋势和更多不确定性的证据较少,但请注意,模型与重新分析的几个区域与具有动态解释的重新分析。在整个工作中,我们在AHT的不同组成部分之间获得了强大的补偿,最值得注意的是,在南大洋中,瞬态eDdy AHT趋势得到了平均体系循环AHT趋势的很好的补偿,从而导致了相对较小的AHT趋势。这重点介绍了考虑AHT的重要性,而不是单独的每个AHT组件。
在大多数热带太平洋中,一个强大的厄尔尼诺现象一直持续到2024年1月至2024年1月,尽管远东赤道太平洋的海面温度(SST)开始减弱。大多数全球气候模型都表明,厄尔尼诺现象可能会持续到3月至4月-MAY(MAM)2024赛季,并在4月至6月至6月的2024赛季过渡到Enso-Neutral。厄尔尼诺现象增加了低于正常的降雨状况的可能性,这可能会在该国大多数地区带来负面影响(例如干旱和干旱),这可能会在3月至2024年5月表现出来。这可能会对不同的气候敏感部门(例如水资源,农业,能源,健康,公共安全和其他关键部门)产生不利影响。1月至2024年3月Outlook ElNiño预计在本赛季的热带太平洋将持续存在。但是,温暖的海面温度可能会继续逐渐减弱。这一时期的气候仍然受到热带太平洋持续的厄尔尼诺现象的影响。可能影响本季节国家的天气系统是东北季风(NEM),剪切线,额叶系统,东方人,地球,跨热收敛区(ITCZ),局部雷暴,低压区域(LPA),高压区域(HPAS)和零(HPAS)和零(0)到零(2)的(2)Trop Cys(TC)(TC)(TC)(TC)(TC) (par)。TC在一年中的这个时候通常不太频繁,轨道大多在登陆,弯腰或穿过米沙ya岛前往巴拉望岛地区的曲目。仍然有望影响该国,带来较低的温度,尤其是在该国北部地区。Jan-Feb-Mar(JFM)季节的降雨量预计将在该国大部分地区低于正常水平以下,除了Agusan del Sur和Surigao del Sur。同样,本赛季的概率预测也表明,该国大多数地区的降雨量低于正常降雨量的可能性更高。通过对观察到的降雨进行降雨预测和先前的评估,确定了气象干燥和干旱的潜力,其中在2024年3月底,该国的60%可能会经历干旱,而干旱属于18%。表面空气温度通常在该国大部分地区的平均水平略高于平均水平略高于平均水平,除了几个可能比平均水平凉爽的区域(Ilocos Sur,Coron,Romblon Masbate和Maasin),并且比平均温度(IBA,Clark,Naia,Dipolog和Misamis and Misamis and Misamis and Misamis)。在此期间,尤其是在一月和2月,仍然会影响该国。 预计3月会逐渐减弱NE季风。 这可能标志着该国干燥和温暖的季节的开始,因为地表空气温度将逐渐开始升高。 在本赛季预计将在2024年4月至2024年6月的前景过渡到ENSO中立状况。 然而,大多数气候模型表明,此后LaNiña的发展可能性增加(> 50%的机会)。仍然会影响该国。预计3月会逐渐减弱NE季风。这可能标志着该国干燥和温暖的季节的开始,因为地表空气温度将逐渐开始升高。在本赛季预计将在2024年4月至2024年6月的前景过渡到ENSO中立状况。然而,大多数气候模型表明,此后LaNiña的发展可能性增加(> 50%的机会)。这个时期的特征是温暖而潮湿的天气条件,尤其是在4月和5月的几个月中,风的过渡向西南(SW)季风季节发生。随着持续的厄尔尼诺现象,吕宋岛和米沙ya(气候I型)的雨季开始时,预计将略有延迟,但在正常范围内,这可能在6月上半年发生。可能影响该国气候的天气系统是Easterlies,LPA,HPAS,ITCZ,局部雷暴,西南季风和两个(2)至四(4)个TC,可以在
