适应气候变化和相关的沿海风险是住在地中海附近的社区的关键问题。该研究探讨了法国地中海沿岸两个主要城市马赛和尼斯的居民如何看待最近的气候变化,以及他们在应对气候和沿海风险变化方面的能力。它还分析了社会人口统计学和心理社会变量对他们所感知的应对水平的影响。使用的工具是Rishi&Mudaliar(2014)的《气候变化知觉清单》(CCPI)的法语翻译和改编版,总共有475名参与者。结果表明,在这两个城市中,受访者都知道气候变化,但并不真正担心。马赛和沿海主观福祉所扮演的角色有所不同。在这两个样本中,应对和适应的最重要预测指标是与气候相关的压力和情绪关注。最后,该研究强调了考虑心理社会变量在气候变化适应管理中的重要性。
Engie宣布扩大其旗舰风电场项目,位于苏伊士湾的沿岸,目前正在埃及的Ras Ghareb,该项目正在建设中。该项目是非洲最大的项目,正在与红海风能财团内的Orascom Construction,Toyota Tsusho Corporation和Eurus Energy Holdings Corporation合作开发。扩张将使风电场的总容量从500兆瓦增加到650兆瓦,进一步巩固了恩吉在推进非洲和中东可再生能源开发方面的关键作用。作为这一扩展的一部分,已与埃及电力传输公司(EETC)签署了长期发电协议(PPA)的额外协议。本协议保证了150兆瓦扩展的收入,并确保该农场的整个650兆瓦的收入已有25年。
漂浮的海上风能允许海上风能系统部署在与常规固定底技术无法接近的水深中,其中已经安装了60 gW。几个浮动的海上风能飞行员项目已经证明了该技术在200 m至300 m之间的水深度运行。在这一经验的基础上,商业规模的项目正在以1300 m的深度开发。在某些地区,在更深的水域中,风能发电具有巨大的资源潜力。但是,增加深度可能会引入新的挑战,以实现安装,维护和维修。在本报告中,我们考虑了在超过的水中漂浮在海上风能中的技术,环境和经济挑战,此处定义为1,300 m至3,000 m之间的深度。
表4进一步凸显了每种情况下实现生物多样性净增益所需的栖息地区域的差异,这是由于所采用的方法而不同的。在非常低的独特性栖息地(在情景2中)创建这些潮间带的栖息地(在场景2中)会产生更多的生物多样性单位,而不是将这些潮间带的栖息地增强到良好的状态(在情景1中),由于与“良好”状态和划分基线相关的困难和时间风险,因此存在的困难和时间风险,虽然在现场开发影响之前创建相同的栖息地会在方案3中相对于其他两个方案3产生最多的单位,因为与创建相关的风险降低了。
爱尔兰的离岸可再生能源(矿石)目标是雄心勃勃的。在2030个目标上建造5吉瓦(GW)的网格连接的离岸风,再加上2GW的2GW非网格连接的海上风,到2040年,我们的目标是提供2050GW的矿石,到2050年,这升至37GW,这是我们当前的最高电力需求量的六倍。这些目标的规模是爱尔兰明显成为矿石领导者的明显潜力的强烈信号。爱尔兰在欧洲拥有广阔的独家经济区(EEZ)的独特优势,大约是我们的陆地,经常且强大的风资源在近海的七倍,以及培养世界领先行业的悠久历史。我们生产超过我们在欧洲可再生能源未来核心的国内需求立场的矿石的潜力。
Co‐PI(s): Matt Churchfield 1 , Marc Day 1 , Georgios Deskos 1 , Caroline Draxl 1 , Nicholas Hamilton 1 , Marc Henry de Frahan 1 , Jon Rood 1 , Ashesh Sharma 1 , Ganesh Vijayakumar 1 , Ann Almgren 2 , Aaron Lattanzi 2 , Jean Sexton 2 , Stuart Slattery 3 , Melissa Allan‐Dumas 3 , Matt Norman 3 , Mark Taylor 4 , Andrew Bradley 4 , Lawrence Cheung 4 , Philip Sakievich 4 , Maciej Waruszewski 4 , Sonya Smith 5 , Lian Shen 6 , François Blanchette 7 1: National Renewable Energy Laboratory, Golden, CO 80401 2: Lawrence Berkeley National Laboratory, Berkeley, CA 94720 3:橡树岭国家实验室,橡树岭,田纳西州37830 4:桑迪亚国家实验室,阿尔伯克基,新墨西哥州87185 5:霍华德大学,华盛顿特区,华盛顿特区,20059年6月6日:明尼苏达州明尼苏达州,明尼苏达大学,明尼苏达大学55455 55455 7:加利福尼亚大学,加利福尼亚大学,CA 95343的一部分,一部分,一部分,一部分劳动,一部分征集了一部分,一部分劳动,一部分劳动,一部分劳动,一部分劳动,一部分是一部分,一部分是一部分劳动。 (DOE'S)浮动海上风力射击旨在降低到2035年浮动海上风能的水平成本(LCOE)。Flowmas Energy Earthshot Research Center(EERC)将提供必要的基础研究,以实现这一积极的时间表的突破。对气象海洋环境中浮动海上风力涡轮机的条件,负载和动力学的了解和模型非常缺乏,尤其是在极端情况下。一个人无法完全优化知识渊博的系统,并且不存在足够的模型。Flowmas从数学,计算和大气 - 科学背景中融合了研究人员,以更好地模型,并更好地理解从气候尺度到风力涡轮机浮动平台和实现风能所需的叶片的动态。Building on DOE investments in high‐fidelity models for climate and land‐based wind energy that can exploit exascale‐class computing, FLOWMAS researchers will create a suite of high‐fidelity codes for floating offshore wind energy that incorporates the microscale (i.e., wind turbines, floating platforms, and mooring systems), mesoscale (i.e., regional weather dynamics), and global/climate scales.研究人员将使用高更多的模拟和正在进行的DOE支持的现场活动来创建数据驱动的替代模型,这些模型在计算上效率高,并且可以探索许多系统条件,并且在长时间的时间内无法使用计算昂贵的高档高档模型无法访问。最后,开发的模型将利用Exascale计算的功率来创建对浮动海上风能系统的新理解,包括气候变化将如何影响海上风能资源,浮动风电场和涡轮机唤醒动态的物理,以及在操作和极端事件中浮动风力涡轮机的负载和动态。
促进海上风力项目的机构和政府官员反复指出,使用高强度噪声设备的海上调查船以将海床特征为风力涡轮机放置,这并不是最近鲸鱼和海豚死亡的原因。他们说没有证据可以联系两者,但与此同时,没有证据支持他们的结论。他们说专家说了这一点,但他们没有识别专家。他们说正在进行调查,但他们没有确定调查人员。他们说,那些像我们一样说相反的人正在与化石燃料行业勾结以贬低该计划,但这是错误的,我们同意没有证据。实际上,他们只是没有看过,因为有足够的证据,导致了一个合理的结论,即调查是最有可能和逻辑的原因。为了帮助他们,我们组装了证据和这份报告。证据由以下元素组成,并在下面详细列出。
支持该技术在世界范围内成功部署的基本步骤是许可过程。目前,存在三个模型:集中式,分散和混合。欧洲最佳实践表明,随着政府控制进程,集中式模型有助于降低开发商的风险。分散的两阶段模型改变了这一点,以使开发人员更有风险,但灵活性也更高。混合模型是其他两个模型的组合,可以轻松地适应特定的国家环境。的确,尽管可以使用这些模型中的任何一个,但它是一个国家的特定政治,财政和文化背景,决定了应该使用哪些。
x 沿着半岛边缘修建一道长约 8.7 英里的防潮墙(陆地上的 T 型墙为 7.2 英里,沼泽中的钢制组合墙为 1.5 英里),顶部高程为 12 英尺(基于 1988 年北美垂直基准面 (NAVD88))。 x 防潮墙将包括多个行人、车辆、铁路和风暴(潮汐)闸门。 x 大约五个临时和五个永久性的中小型液压泵站。 x 大约 9,300 英尺的牡蛎礁生物海岸线岩床。 x 在无法修建防潮墙的住宅区,对大约 100 座建筑进行防洪或抬高,一楼最低高程为 12 英尺(NAVD88)。 x 在避免和减少影响之后,建议的计划将完全缓解一些不利的环境影响。沼泽中的风暴潮墙将永久影响约 35 英亩的盐沼湿地。x 实施环境补偿缓解措施和相关监测和适应性管理计划。监测将持续进行,直到根据附录 F 中查尔斯顿半岛沿海风暴风险管理缓解计划草案中所述的确定标准确定缓解措施成功。监测不得超过 10 年。
