为了使混合动力,跨部门项目(“集线器”)连接和整合大规模的海上风,有必要了解对行业耦合的需求,并启动并促进有关关键监管,法律和商业方面的结构化讨论。此类讨论的目的是建立协议和法律框架,以使利益保持一致并为会员国,项目开发商和其他利益相关者提供确定性。因此,财团将发表两篇讨论论文,旨在为大型海上风的系统集成提供详尽的知识基础。具有能源系统视角的本文将重点放在整个价值链上,并将解释对未来能源系统中灵活性,扇形耦合和电工的需求。此外,它将提供四个指导原则,以有效地整合能量系统中的海上风。第二份讨论文件将基于本文,并将更深入地研究关键市场和监管原则,这些原则可以支持网络基础设施公司在能源系统中有效地整合在近海风。
表4进一步凸显了每种情况下实现生物多样性净增益所需的栖息地区域的差异,这是由于所采用的方法而不同的。在非常低的独特性栖息地(在情景2中)创建这些潮间带的栖息地(在场景2中)会产生更多的生物多样性单位,而不是将这些潮间带的栖息地增强到良好的状态(在情景1中),由于与“良好”状态和划分基线相关的困难和时间风险,因此存在的困难和时间风险,虽然在现场开发影响之前创建相同的栖息地会在方案3中相对于其他两个方案3产生最多的单位,因为与创建相关的风险降低了。
支持该技术在世界范围内成功部署的基本步骤是许可过程。目前,存在三个模型:集中式,分散和混合。欧洲最佳实践表明,随着政府控制进程,集中式模型有助于降低开发商的风险。分散的两阶段模型改变了这一点,以使开发人员更有风险,但灵活性也更高。混合模型是其他两个模型的组合,可以轻松地适应特定的国家环境。的确,尽管可以使用这些模型中的任何一个,但它是一个国家的特定政治,财政和文化背景,决定了应该使用哪些。
Co‐PI(s): Matt Churchfield 1 , Marc Day 1 , Georgios Deskos 1 , Caroline Draxl 1 , Nicholas Hamilton 1 , Marc Henry de Frahan 1 , Jon Rood 1 , Ashesh Sharma 1 , Ganesh Vijayakumar 1 , Ann Almgren 2 , Aaron Lattanzi 2 , Jean Sexton 2 , Stuart Slattery 3 , Melissa Allan‐Dumas 3 , Matt Norman 3 , Mark Taylor 4 , Andrew Bradley 4 , Lawrence Cheung 4 , Philip Sakievich 4 , Maciej Waruszewski 4 , Sonya Smith 5 , Lian Shen 6 , François Blanchette 7 1: National Renewable Energy Laboratory, Golden, CO 80401 2: Lawrence Berkeley National Laboratory, Berkeley, CA 94720 3:橡树岭国家实验室,橡树岭,田纳西州37830 4:桑迪亚国家实验室,阿尔伯克基,新墨西哥州87185 5:霍华德大学,华盛顿特区,华盛顿特区,20059年6月6日:明尼苏达州明尼苏达州,明尼苏达大学,明尼苏达大学55455 55455 7:加利福尼亚大学,加利福尼亚大学,CA 95343的一部分,一部分,一部分,一部分劳动,一部分征集了一部分,一部分劳动,一部分劳动,一部分劳动,一部分劳动,一部分是一部分,一部分是一部分劳动。 (DOE'S)浮动海上风力射击旨在降低到2035年浮动海上风能的水平成本(LCOE)。Flowmas Energy Earthshot Research Center(EERC)将提供必要的基础研究,以实现这一积极的时间表的突破。对气象海洋环境中浮动海上风力涡轮机的条件,负载和动力学的了解和模型非常缺乏,尤其是在极端情况下。一个人无法完全优化知识渊博的系统,并且不存在足够的模型。Flowmas从数学,计算和大气 - 科学背景中融合了研究人员,以更好地模型,并更好地理解从气候尺度到风力涡轮机浮动平台和实现风能所需的叶片的动态。Building on DOE investments in high‐fidelity models for climate and land‐based wind energy that can exploit exascale‐class computing, FLOWMAS researchers will create a suite of high‐fidelity codes for floating offshore wind energy that incorporates the microscale (i.e., wind turbines, floating platforms, and mooring systems), mesoscale (i.e., regional weather dynamics), and global/climate scales.研究人员将使用高更多的模拟和正在进行的DOE支持的现场活动来创建数据驱动的替代模型,这些模型在计算上效率高,并且可以探索许多系统条件,并且在长时间的时间内无法使用计算昂贵的高档高档模型无法访问。最后,开发的模型将利用Exascale计算的功率来创建对浮动海上风能系统的新理解,包括气候变化将如何影响海上风能资源,浮动风电场和涡轮机唤醒动态的物理,以及在操作和极端事件中浮动风力涡轮机的负载和动态。
本建筑和运营计划中包含的某些信息(COP)符合特权和机密的商业秘密和/或商业或财务信息的资格,并且根据《联邦信息自由法》(5 U.S.C.]§552(b)(4))(如海洋能源管理局的[BOEM]法规30联邦法规[CFR]§§585.113和585.620所反映的。根据《新泽西州公开记录法》(根据新泽西州行政法规[N.J.A.C.]47:1A),新泽西行政法规7:1d-3,国家历史保护法(美国法典16号) 第470W-3部分)和1979年的《考古资源保护法》(美国法典16 第4702-3部分)。 Ocean Wind LLC在该警察中标记了每个附录,其中包含特权和机密材料,其中包含“包含机密信息”的传说,并要求Boem(以及提供该警察副本的每个联邦和州机构)拒绝公开披露这些指定的材料。47:1A),新泽西行政法规7:1d-3,国家历史保护法(美国法典16号第470W-3部分)和1979年的《考古资源保护法》(美国法典16第4702-3部分)。Ocean Wind LLC在该警察中标记了每个附录,其中包含特权和机密材料,其中包含“包含机密信息”的传说,并要求Boem(以及提供该警察副本的每个联邦和州机构)拒绝公开披露这些指定的材料。
漂浮的海上风能允许海上风能系统部署在与常规固定底技术无法接近的水深中,其中已经安装了60 gW。几个浮动的海上风能飞行员项目已经证明了该技术在200 m至300 m之间的水深度运行。在这一经验的基础上,商业规模的项目正在以1300 m的深度开发。在某些地区,在更深的水域中,风能发电具有巨大的资源潜力。但是,增加深度可能会引入新的挑战,以实现安装,维护和维修。在本报告中,我们考虑了在超过的水中漂浮在海上风能中的技术,环境和经济挑战,此处定义为1,300 m至3,000 m之间的深度。
海风爵士乐团是西南海军乐团众多专业团体之一。海风爵士乐团主要在公共音乐会和军事活动(如贵宾招待会)上演出,这使得乐团的音乐范围十分广泛。曲目包括传统和现代爵士乐、拉丁音乐、当代流行音乐、放克音乐等。
•风涡轮机如何工作•海上风力资源•水上什么?•水下有什么?•为什么要近海风?•漂浮的风•海上风要多少钱?•有什么冲突和环境挑战?
我们的分析目的是建立在俄勒冈州的海上风积分的先前工作(Douville等人)(2020)和美国东北部(Beiter等人2020)通过分析未来的发电和传输系统将如何管理离岸风的包含。该分析为系统规划人员和政策制定者提供了见解,因此他们可以解决关键系统的约束,并最大程度地提高海上风的价值,俄勒冈州和更广泛的电力系统。类似于Beiter等人所采用的方法。2020和Douville等。 2020,我们使用生产成本模型(PCM)来模拟系统调度,以了解近海风的集成的操作影响。 而Douville等人。 2020专注于许多级别的离岸风能部署,我们选择了几个关键水平的离岸风,并改变了系统其余部分的网格基础设施特征。 最值得注意的是,我们改变了陆基可变可再生能源(VRE)渗透,传输基础设施投资程度以及在海上风注射点上的储能系统的部署。 我们还通过运行多个模拟不同年份的历史天气条件来测试近海风集成的发现的鲁棒性。2020和Douville等。2020,我们使用生产成本模型(PCM)来模拟系统调度,以了解近海风的集成的操作影响。而Douville等人。2020专注于许多级别的离岸风能部署,我们选择了几个关键水平的离岸风,并改变了系统其余部分的网格基础设施特征。最值得注意的是,我们改变了陆基可变可再生能源(VRE)渗透,传输基础设施投资程度以及在海上风注射点上的储能系统的部署。我们还通过运行多个模拟不同年份的历史天气条件来测试近海风集成的发现的鲁棒性。
