1。国际嘌呤能信号联合研究中心,针灸学院和图娜,成都中医大学,中国成都。2。英国曼彻斯特曼彻斯特大学生物学,医学与健康学院。 3。 爱尔兰皇家外科医学院皇家外科医生学院生理学与医学物理系,爱尔兰都柏林。 4。 Futureneuro,爱尔兰科学基金会慢性和罕见神经病研究中心,爱尔兰皇家外科医生,医学与健康科学学院,爱尔兰都柏林。 5。 中国成都四川省的针灸和计时生物学主要实验室。 6。 中国成都中药大学卫生与康复学院。 7。 Rudolf Boehm药理学与毒理学研究所,德国莱比锡大学,德国。英国曼彻斯特曼彻斯特大学生物学,医学与健康学院。3。爱尔兰皇家外科医学院皇家外科医生学院生理学与医学物理系,爱尔兰都柏林。4。Futureneuro,爱尔兰科学基金会慢性和罕见神经病研究中心,爱尔兰皇家外科医生,医学与健康科学学院,爱尔兰都柏林。5。中国成都四川省的针灸和计时生物学主要实验室。 6。 中国成都中药大学卫生与康复学院。 7。 Rudolf Boehm药理学与毒理学研究所,德国莱比锡大学,德国。中国成都四川省的针灸和计时生物学主要实验室。6。中国成都中药大学卫生与康复学院。 7。 Rudolf Boehm药理学与毒理学研究所,德国莱比锡大学,德国。中国成都中药大学卫生与康复学院。7。Rudolf Boehm药理学与毒理学研究所,德国莱比锡大学,德国。Rudolf Boehm药理学与毒理学研究所,德国莱比锡大学,德国。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
海马体是一种皮层结构,由具有独特回路的子区组成。了解其微观结构(以这些子区为代表)可以提高我们对学习和记忆的机制理解,并且对多种神经系统疾病具有临床潜力。一个突出的问题是如何在两个形态截然不同的海马体之间划分、注册或检索同源点。在这里,我们提出了一种基于表面的配准方法,该方法以对比度无关、拓扑保持的方式解决了这个问题。具体而言,首先对整个海马体进行分析展开,然后根据厚度、曲率和脑回在 2D 展开空间中注册样本。我们在七个 3D 组织学样本中演示了这种方法,并且与更传统的配准方法相比,使用此方法对子区进行了更出色的对齐。
迷走神经是身体和大脑之间的内感受中继。尽管迷走神经在摄食行为、能量代谢和认知功能中的作用已得到充分证实,但连接迷走神经和海马的复杂功能过程及其对学习和记忆动态的贡献仍然难以捉摸。在这里,我们研究了肠脑迷走神经轴是否以及如何在行为、功能、细胞和分子水平上促进海马的学习和记忆过程。我们的结果表明,迷走神经轴的完整性对于长期识别记忆至关重要,同时对其他形式的记忆也有保护作用。此外,通过结合多尺度方法,我们的研究结果表明肠脑迷走神经张力在扩大细胞内信号事件、基因表达、海马树突棘密度以及功能性长期可塑性 (LTD 和 LTP) 方面发挥着允许作用。这些结果强调了肠脑迷走神经轴在维持海马群的自发和稳态功能以及调节其学习和记忆功能方面的关键作用。总之,我们的研究全面了解了肠脑迷走神经轴在塑造时间依赖性海马学习和记忆动态方面的多方面参与。了解这种内感受性身体-大脑神经元通讯背后的机制可能为与认知衰退相关的疾病(包括神经退行性疾病)的新治疗方法铺平道路。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 2 月 3 日发布。;https://doi.org/10.1101/2025.02.02.636169 doi:bioRxiv 预印本
推荐引文 推荐引文 Ghasemi,Mohammad Reza;法塔赫,萨汉德·德赫拉尼;本-马哈茂德,阿菲夫;古普塔,维杰;拉拉·G·斯图恩;莱斯卡、盖坦;查特伦,尼古拉斯;康拉德·普拉泽;埃德里,帕特里克;萨德吉,侯赛因;伊西多尔,伯特兰;本杰明·科涅;舒尔茨,海蒂 L.;克劳斯佩-施图贝克,伊洛纳;佩里亚萨米,拉达克里希南;南普蒂里,席拉;米尔法赫莱,礼萨;阿利扬普尔、萨哈尔;西尔布,史蒂芬;普法伊弗,乌尔里希;斯普兰格,斯蒂芬妮;格伦德曼-豪瑟,凯瑟琳;哈克,托比亚斯·B.;帕帕佐普卢,玛丽亚·T.;达·席尔瓦·贡萨尔维斯,泰琳; Panagiotakaki, Eleni;Arzimanoglou, Alexis;Tonekaboni, Seyed Hassan;Lacassie, Yves;等人,“新型数字异常、海马萎缩和突变扩大了 Houge 型 X 连锁综合征性智力发育障碍 (MRXSHG) 中 CNKSR2 的基因型和表型谱”(2024)。医学院教职员工出版物。3292。https://digitalscholar.lsuhsc.edu/som_facpubs/3292 10.1002/ajmg.a.63963
迷走神经刺激 (VNS) 是一种已获批准的治疗方法,可用于治疗多种神经系统疾病,包括难治性癫痫和难治性抑郁症等,目前正作为治疗神经系统痴呆症(如阿尔茨海默病 (AD) 和相关痴呆 [1] )的潜在疗法而受到关注。VNS 刺激有两种形式,即侵入性和非侵入性(经皮),前者涉及通过手术将刺激电极植入神经周围,后者因副作用小而最受欢迎,涉及通过完整的皮肤刺激迷走神经耳支 (ABVN) 的耳甲区或迷走神经分布的颈部区域 [2] 。在耳甲区以外,耳颞神经支配耳区上方和耳大神经支配下外侧 [3] ,但关于电刺激对这些神经对身体的影响的研究很少。
突触变化在记忆过程中起着重要作用。然而,即使在基础条件下,大脑状态对海马网络中突触反应的调节仍然知之甚少。我们记录了自由活动的雄性大鼠在五条海马通路上诱发的突触反应。我们发现,在齿状回穿通通路 (PP-DG) 突触处,清醒状态下的反应比睡眠状态下的反应要强。在 CA1 的 Schaffer 侧支 (SC-CA1) 突触处,非快速眼动睡眠 (NREM) 状态下的反应比其他状态下的反应要强。在快速眼动睡眠 (REM) 期间,PP-DG 和 SC-CA1 突触处的反应比 NREM 状态下的反应要弱,而穹窿至伏隔核突触处 (Fx-NAc) 处的反应比其他状态下的反应要强。相比之下,穹窿对内侧 PFC 突触 (Fx-PFC) 的反应和穹窿对杏仁核突触 (Fx-Amy) 的反应受警觉状态的调节较弱。延长睡眠时间会导致 PP-DG 和 Fx-Amy 突触发生突触变化,但不会导致其他突触变化。突触反应也与局部振荡有关,并且在 Fx-PFC 和 Fx-NAc 之间高度相关,但在 Fx-Amy 和这些突触之间不相关。这些结果揭示了突触特异性调节可能有助于睡眠-觉醒周期中的记忆巩固。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年1月31日发布。 https://doi.org/10.1101/2025.01.28.635301 doi:Biorxiv Preprint
注意力缺陷多动症(ADHD)是常见的神经发育障碍之一,在全球范围内广泛普遍。ADHD的主要症状包括分歧,冲动和多动症,这显着影响了个体的认知,行为和情感维度。这些疾病通常会在整个成人整个过程中继续存在,并且与相关的并发症一起影响了各种领域,例如个人健康,学术成就和社交互动。目前尚不清楚发病机理和促成多动症的原因。因此,本研究的目的是对系统评价和荟萃分析(SRMA)进行雨伞审查,以系统地评估与ADHD有关ADHD风险因素有关的所有流行病学问题的方法,潜在偏见和有效性的质量,同时就这些风险因素提供了全面的概括。