染色体反演可以通过在进化谱系之间建立和维持不同的等位基因组合来在差异和生殖隔离中发挥重要作用。另外,他们可以采取平衡多态性的形式,这些形式在人群中隔离,直到一个排列变得固定为止。关于反演多态性如何出现,长期保持它们的维持方式以及最终是否以及它们如何贡献物种的许多问题。长长的海马(海马guttulatus)在遗传上细分为地理谱系和海洋泻湖生态型,具有共享的结构变化谱系和生态型差异。在这里,我们旨在表征结构变体并重建其历史并怀疑在生态型形成中的作用。,我们通过分析来自大西洋,地中海和黑海种群的112个整体基因组序列,生成了近乎染色体水平的基因组组装,并描述了多样性和差异的基因组宽模式。还通过分析链接的读取测序数据,我们发现了两个染色体反转的证据,这些染色体倒数长度是多个巨蛋,并显示了整个物种范围内谱系和生态型之间的对比等位基因频率模式。我们揭示了这些反转代表古老的种内多态性,一种可能是通过不同的选择来维持的,而另一种则由伪过度污染。缺乏特定的单倍型组合和两种复制反转之间的假定功能相互作用,进一步支持了两个反转之间的选择性耦合。最后,我们检测到两个反转的倒数等位基因之间的差异差异,可能会影响其动力学和对差异和物种形成的贡献。
a 卡迪夫大学计算机科学与信息学学院,卡迪夫 CF24 3AA,英国;b 伯明翰大学心理学学院和人类脑健康中心,伯明翰 B15 2TT,英国;c 蒙特利尔大学心理学系 cerebrUM,蒙特利尔,魁北克省 H2V 259,加拿大;d 普林斯顿大学普林斯顿神经科学研究所,普林斯顿,新泽西州 08544;e 普林斯顿大学心理学系,普林斯顿,新泽西州 08540;f 认知和计算神经科学实验室,生物医学技术中心,马德里 28223,西班牙;g 胡安卡洛斯国王大学健康科学学院,马德里 28933,西班牙;h 拉巴斯大学医院神经外科服务,马德里 28046,西班牙; i 西班牙马德里 28046 拉巴斯大学医院神经病学和临床神经生理学服务部癫痫监测科;j 西班牙马德里 28223 弗朗西斯科德维多利亚大学医学院;k 英国伯明翰 B15 2GW 伊丽莎白女王医院神经生理学部复杂癫痫和外科服务部;l 英国伯明翰 B15 2GW 伊丽莎白女王医院神经放射学部复杂癫痫和外科服务部;m 英国伯明翰 B15 2GW 伊丽莎白女王医院神经外科部复杂癫痫和外科服务部;n 英国格拉斯哥大学神经科学与心理学研究所,格拉斯哥 G12 8QQ;o 英国牛津大学实验心理学系,牛津 OX2 6GG;牛津人类大脑活动中心、威康综合神经影像中心、牛津大学精神病学系,牛津 OX3 7JX,英国
1 加拿大麦吉尔大学蒙特利尔神经病学研究所和医院麦康奈尔脑成像中心 2 加拿大西安大略大学罗伯茨研究所 3 美国北卡罗来纳州达勒姆市杜克大学医学中心神经病学系 4 德国莱比锡马克斯普朗克人类认知和脑科学研究所奥托·哈恩认知神经遗传学小组 5 德国于利希研究中心神经科学与医学研究所 1 6 德国伍珀塔尔贝尔吉施大学数学与自然科学学院、FB 物理系 7 德国海因里希海涅大学杜塞尔多夫大学医院 C. & O. Vogt 脑研究所 8 日内瓦大学医院精神病学系成人精神病学分部,2, Chemin du Petit-Bel-Air, CH-1226,Thonex,瑞士 * 共同资深作者
“政治公众人物(PEP)”是指目前或曾经在本国或其他国家担负重要公共职能的自然人,如国家元首或政府首脑、高级政治家、高级政府官员、司法或军事官员、国有企业的高级执行经理、政党的高级官员,以及目前或曾经在国际组织担任管理职务或在该组织内担任任何重要职务的人士;该定义还包括以下内容:
结果:考虑到脑半球量后,男性参与者比女性参与者表现出更大的左右HV。海马生长率与性别没有差异。在半球量较大的儿童中,ASD患有ASD的男性和女性参与者的HV比类似半球的TD参与者大。这种效果比仅仅是大脑(大脑相对于身体大小)的较广泛的群体存在。右海马比两组和性别的海马大。右侧的左体积差异对于ASD的差异更大。调整了半球体积后,患有ASD的男性参与者在右海马生长和适应性行为之间显示出显着的正相关。
目的 颅内人脑记录通常使用无法区分单个神经元动作电位的记录系统。在这种情况下,无法通过功能电路内的位置来识别单个神经元。本文展示了在 CA3 和 CA1 细胞场内单独记录的海马神经元的定位验证。方法 在 23 名接受侵入性监测以识别癫痫发作灶的人类患者体内植入了大-微深层电极。通过位于海马内的大-微深层电极记录的细胞外动作电位波形来分离和识别单个神经元。使用 3T MRI 扫描对 23 名植入患者以及 46 名正常(即非癫痫)患者和 26 名有癫痫病史但没有深层电极放置史的患者的海马进行形态测量调查,从而提供海马沿典型植入轨迹的平均尺寸。根据记录电极位置、深部电极的立体定位与形态测量调查的对比以及术后 MRI,暂时确定其在 CA3 和 CA1 细胞场内的定位。根据波形和放电频率特征,将细胞选为候选 CA3 和 CA1 主要神经元,并通过功能连接测量确认其位于 CA3 至 CA1 神经投射通路内。结果互相关分析证实,近 80% 的假定 CA3 至 CA1 细胞对表现出与细胞间前馈连接相符的正相关,而只有 2.6% 表现出反馈(逆)连接。即使排除了同步和长延迟相关性,在总共 4070 对中的 1071 对(26%)中发现了 CA3-CA1 对之间的前馈相关性,这与已发表的动物研究中报告的 20%–25% 前馈 CA3-CA1 相关性相比更为有利。结论 本研究证明了在活体中记录人类大脑特定区域和子域神经元的能力。随着脑机接口和神经假体研究的不断扩展,有必要能够识别感兴趣的神经回路内的记录和刺激位点。
microRNA(miRNA)是与发育和疾病的许多方面相关的简短非编码和保存良好的RNA。microRNA控制与不同生物过程相关的基因的表达,并在许多基因的和谐表达中起着重要的作用。在中枢神经系统的神经发育过程中,miRNA在时空受到调节。在成熟的大脑中,miRNA的动态表达继续持续,突出了它们在神经元中的功能重要性。作为关键的大脑结构之一,海马是大脑主要功能连接的关键组成部分。海马中的基因表达异常导致神经发生,神经成熟和突触形成的扰动。这些干扰是几种神经系统疾病和行为缺陷的根源,包括阿尔茨海默氏病,癫痫和精神分裂症。有强有力的证据表明,miRNA中的异常是通过离子通道的不平衡活性,神经元兴奋性,突触可塑性和神经元凋亡来在海马中的神经退行性机制中造成的。一些miRNA会影响海马中的氧化应激,炎症,神经分化,迁移和神经发生。此外,神经变性中的主要信号传导级联反应,例如NF-Kβ信号传导,PI3/AKT信号传导和Notch途径,由miRNA密切调节。这些观察结果表明,MicroRNA是海马基因调节网络中的重要调节剂。在当前的综述中,我们着重于海马正常发育和神经发生的miRNA功能作用。我们还考虑海马中的miRNA对于病理生理途径中的基因表达机制至关重要。
abtract:神经成像研究的最后十年产生了有关杏仁核,内侧前额叶皮层和海马在流经后压力障碍(PTSD)中的结构,神经化学和功能的重要信息。神经影像学研究表明,在症状状态和处理创伤无关的情感信息期间,PTSD的杏仁核反应性升高。重要的是,杏仁核反应性与PTSD的症状严重程度呈正相关。相比之下,内侧前额叶皮层似乎较小,并且在症状状态下是反应不足,并且在PTSD中的情绪认知任务的表现。内侧前额叶皮层反应性与PTSD症状严重程度成反比。最后,回顾的研究表明,PTSD中海马的体积,神经元完整性和功能完整性的减少。提出了其余的研究问题和相关的未来方向。
摘要 海马由沿隔颞轴重复的刻板神经元回路组成。该横向回路包含具有刻板连接的不同子区,支持关键的认知过程,包括情景记忆和空间记忆。然而,现有技术无法对体内横向海马回路进行全面测量。在这里,我们开发了一种通过植入玻璃微潜望镜对清醒小鼠的横向海马平面进行双光子成像的方法,允许光学访问主要的海马子区和锥体神经元的树突树突。使用这种方法,我们追踪了 CA1 顶端树突的树突形态动态并描述了树突棘周转。然后我们使用钙成像来量化位置和速度细胞在子区中的普遍性。最后,我们测量了空间信息的解剖分布,发现空间选择性沿 DG 到 CA1 轴分布不均匀。这种方法扩展了现有的海马回路结构和功能测量工具箱。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2025年2月24日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.02.22.639699 doi:Biorxiv Preprint