摘要:短波红外胶体量子点 (SWIR-CQD) 是能够跨 AM1.5G 太阳光谱进行收集的半导体。当今的 SWIR-CQD 太阳能电池依赖于旋涂;然而,这些薄膜的厚度一旦超过 ∼ 500 nm,就会出现开裂。我们假定刮刀涂覆策略可以实现厚 QD 薄膜。我们开发了一种配体交换,并增加了一个分解步骤,从而能够分散 SWIR-CQD。然后,我们设计了一种四元墨水,将高粘度溶剂与短 QD 稳定配体结合在一起。这种墨水在温和的加热床上用刮刀涂覆,形成了微米厚的 SWIR-CQD 薄膜。这些 SWIR-CQD 太阳能电池的短路电流密度 (Jsc) 达到 39 mA cm − 2,相当于收集了 AM1.5G 照明下入射光子总数的 60%。外部量子效率测量表明,第一个激子峰和最接近的法布里-珀罗共振峰均达到约 80% 这是在溶液处理半导体中报道的 1400 nm 以上最高的无偏 EQE。关键词:红外光伏、量子点、配体交换、刀片涂层■ 介绍
J 化学镀镍和浸金镀层厚度<118微英寸(Ni)和2微英寸 IPC 6012B 3级/AK 盲孔镀层厚度小于0.8mil IPC 6012B 3级/AL 树脂凹陷大于3mil IPC 6012B 3级/AM 实心铜微孔空洞超过33% 8252313C N 层压板分层 IPC 6012B 3级/AO 层压板裂纹 IPC 6012C 3级/AP 凹蚀小于0.2mil IPC 6012B 3级/AQ 浸金镀层厚度超过6mil IPC 6012C 3级/AR 铜镀层厚度小于1.0mil IPC 6012B 3级/AS 层压板裂纹大于3.0mil IPC 6012B 3级3/AT 介电厚度最小小于 3.0 mil IPC 6012B 3 级/AU 层压板空洞大于 3.0 mil IPC 6012B 3 级/A
2010 年,Sorgic 和 Radakovic [8] 对浸没在矿物油中的变压器进行了二维模拟,以将冷却系统与油驱动和强制油配置进行比较。2012 年,Tsili 等人建立了一种方法来开发三维模型并预测热点的温度 [9]。这一年,Skillen 等人对一个不对称非等温流二维模型进行了 CFD 模拟,以表征具有锯齿形冷却的变压器绕组中的油流 [10]。2014 年,Yatsevsky 对浸没在自然对流油中的变压器进行了二维模拟,包括铁心、油箱和散热器,以预测热点。所开发的模型表现出良好的性能,并通过实验进行了验证 [11]。最近,Torriano 等人在一种采用自然对流冷却(ON)的比例盘式电力变压器中开发了三维传热模型 [12]。
Univessel ® Glass 是我们为所有 Biostat ® 台式生物反应器提供的平台培养容器。它有 1 L、2 L、5 L 和 10 L 的工作容量可供选择。得益于新设计和向后兼容性 - 所有现有的探针、浸管、喷射器和叶轮也适用于新的 Univessel ® Glass。
低温电气化是超导技术与低温工程相结合提供的解决方案,有助于解决电网和运输领域的全球变暖、污染、排放、损失等问题,实现许多净零排放计划的目标 [1]。超导变压器是电网低温电气化最有前途的应用之一,因为与传统变压器相比,超导变压器重量更轻(2 到 3 倍)、更紧凑(3 到 5 倍)、效率更高(高达 5%),过载耐受性更强 [2]。此外,超导变压器对环境的影响比传统的油浸式变压器要小,因为超导绕组需要浸入无毒无害的液氮 (LN2) 中。因此,通过省去这种变压器中的油,可以完全消除因油过热引起爆炸的风险。另一方面,与传统变压器相比,这将提高超导变压器的可靠性。这些优势为在高功率应用中实施超导变压器或为敏感负载供电,用传统的油浸式变压器取代它们铺平了道路。目前,使用超导变压器的盈亏平衡为 25 MVA,但随着带/线生产技术的进步以及制造技术的进步,这一功率将在本十年进一步下降。除了超导带制造挑战之外,其他挑战也减缓了超导变压器技术的发展进程,包括容错问题 [3- 4]、绕组低温恒温器制造的线圈架生产成本高以及高效的冷却系统设计。许多研究人员和公司正在努力解决上述挑战,以使超导变压器成为电网的可行商业化组件,并提高其与传统油浸式变压器的竞争力。大多数努力都集中在带生产上
检测药物:用GIEMSA染色染色的血液或器官涂片的显微镜检查是鉴定临床受影响动物中adlasma的最常见方法。在这些涂片中,A。缘缘生物的直径约为0.3-1.0 µm,位于红细胞缘或附近,直径约为0.3–1.0 µm。Anaplasma Centrale的外观相似,但大多数生物都位于红细胞的中心。在染色的涂片中,很难将A.边缘与A. Centrale区分开,尤其是Rickettsaemia含量低。商业污渍会产生非常快速的Anaplasma spp染色。在某些国家 /地区可用。只有在感染的粒细胞中才能观察到吞噬细胞吞噬细胞,主要是嗜中性粒细胞,而只能在感染的单核细胞中观察到。
rilsan®精细粉末是从可再生资源获得的专业聚酰胺粉末。rilsan®T范围设计用于使用流化的床浸涂层涂层金属零件。它们提供了防止磨损,撞击,腐蚀,化学物质以及涂鸦的优越保护。请咨询Arkema文献以获取申请方法和建议。
1 研究生,2 教授,3 教授 1 SPSMBH 建筑学院,科尔哈普尔,马哈拉施特拉邦,印度。摘要:不同的屋顶材料和方法可用于增强功能并减少维护需求。建议使用预涂镀锌铁 (PPGI) 板和传统水泥屋顶板,但石棉水泥板由于易碎和更换过程中的潜在事故而具有局限性。预涂镀锌铁板由于腐蚀、噪音和热量问题而有额外的维护要求。铸造行业因屋顶开裂而面临频繁的维护和生产周期中断。新材料在工业屋顶中的使用尚未得到太多研究,因此选择最新的材料技术对于提高产量同时最大限度地减少与屋顶相关的问题至关重要。
增强弹力织物的压缩力 Performax ™ 4388 是一种可拉伸的水性化合物,具有出色的拉伸恢复性、耐磨性、柔韧性和柔软度平衡,可增强塑身衣、牛仔服、瑜伽裤、矫形织物和其他要求严苛的应用中使用的弹力织物的压缩力。这种即用型聚氨酯涂层可形成柔软、有弹性的薄膜,对棉、涤纶、尼龙及其混纺等多种基材有出色的附着力。Performax 4388 可使用所有传统技术进行涂覆,例如刮刀、迈耶棒、轮转丝网和凹版印刷,以及精密喷涂和功能性数码印刷方法。根据性能要求,可涂覆单层或多层化合物涂层,以达到所需的性能水平。