潜热存储系统用于将局部环境的温度保持在恒定范围内。该过程通过嵌入形状稳定剂的相应相变材料在冻结/熔化过程中释放/存储潜热来实现,形状稳定剂是使相变材料保持熔融状态的支架。在这项工作中,选择了高硅 ZSM-5 及其改性版本作为分子和聚合物相变材料(即月桂酸和聚乙二醇)的形状稳定剂,使用溶剂辅助真空浸渍进行浸渍。主要微孔类似物(母体 ZSM-5 及其酸处理衍生物)对每种相变材料的吸收率限制为 40%。相比之下,富含中孔的类似物(在碱性条件下形成)的月桂酸浸渍率达到 65%,聚乙二醇浸渍率达到 70%,且在 70 ◦ C 时无任何泄漏,导致每种复合材料的潜热分别为 106.9 J/g 和 118.6 J/g。一个简单的原型实际应用表明,制备的富含中孔的 ZSM-5 月桂酸和聚乙二醇复合材料在太阳能加热下可将其温度保持比周围环境低 27% 和 22%,而在太阳能加热停止时可将其温度保持高 20% 和 26%。所提出的研究结果表明,中孔富集提高了这些低成本、无毒沸石形状稳定剂对相变材料的吸收,因此使它们成为解决家庭环境加热/冷却过程中能量损失的隔离材料的良好候选者。
浸渍剥离法的优点是它是最温和的测试方法,如果化学物质对冲击敏感,这一点很重要。它还有另一个显著的优点:它可以在一定程度上检测二烷基过氧化物、多过氧化物和环状过氧化物,而其他方法(也许硫酸钛法除外)无法有效检测这些化合物。一些溶剂,特别是异丙醚和二恶烷,可能会形成大量且危险的这些高反应产物。此外,标准的过氧化物去除程序可能会去除所有的氢过氧化物,但会留下危险水平的烷基过氧化物、多过氧化物和环状过氧化物。常规的硫氰酸亚铁和碘法在这种情况下可能会产生假阴性,但浸渍剥离法可能会检测到剩余的过氧化物,尽管可能不是定量的。然而,浸渍剥离法很难用于与水不混溶的低挥发性化学品。
结果,获得的葡萄酒的酒精含量较高,酸性较低,有时较重,有时不那么强烈 - 与市场期望完全不一致。如果我们要了解危及的问题并提出适当的解决方案,将这些感官属性转化为Oenologologicy术语至关重要。可饮用性是用来描述一种易于消费者享用的红酒的术语。对于酿酒师来说,这意味着要仔细考虑浸渍行程(热镀锌与传统浸渍),并在单宁蛋白上工作以控制口感参数,例如结构和涩味。这也是构成香气并控制什么可以掩盖它们的问题。
请参阅 http://www.analog.com/space 上的太空合格零件清单手册,了解产品/封装列表。|------------------------------------------------------------------------- 器件类型 | |----------------------------------------------------- 总剂量辐射指示器(可选)(请参阅下面的注释 1 )| | R = 符合 MIL-PRF-38535 ¶ 3.4.3 RHA 的 100Krad | | “0” 或“-“ = 不符合 MIL-PRF-38535 ¶ 3.4.3 RHA 的 100Krad | | |----------------------------------- 电气等级 | | | |----------------------------------------- 非“R”级零件的辐射选项 | | | | |------------------- 导线表面处理 | | | | | |--------- 封装后缀 OP 15 R 9 0 3 J | | | | | |------- 封装:| | | | | C = 芯片 | | | | D = 侧焊陶瓷双列直插式封装 | | | | | E = 陶瓷无引线芯片载体 | | | | | F = 陶瓷扁平封装(2、16 和 28 引线) | | | | | G = 陶瓷引脚栅格阵列 | | | | | G7 = 7 引线密封 16.1 x 17.3 x 1.7mm,表面贴装 | | | | | G8 = 8 引线密封 10.2 x 4.6 x 1.8mm,表面贴装 | | | | | G16 = 16 引线密封 11.4 x 11.4 x 1.7mm,表面贴装 | | | | | G24 = 24 引线密封 12.4 X 12.4 X 2.4mm,表面贴装 | | | | | G32 = 32 引线密封 16 x 16 x 1.96mm,表面贴装H = 密封金属罐 | | | | | J = 8 引脚 TO-99 罐 | | | | | L = 10 引脚扁平封装 | | | | | LH5 = 密封 5.1x5.1x1.4mm 表面贴装 | | | | | LH250 = 密封 6.35x6.35x1.27mm 表面贴装 | | | | | LSH6 = 密封 6.0x6.0x1.52mm,表面贴装 | | | | | LSH7 = 密封 7.0x7.0x1.52mm,表面贴装 | | | | | FSH10 = 密封 18.0x12.35x3mm 表面贴装 | | | | | M = 14 引脚扁平封装 | | | | | N = 24 引脚扁平封装 | | | | | Q = 16 引脚陶瓷双列直插式封装(PMI Div)| | | | | Q = 陶瓷浸渍,玻璃密封(模拟部门) | | | | | R = 20 引线陶瓷浸渍 | | | | | RC = 20 引线无铅载体 | | | | | T = 28 引线陶瓷浸渍 | | | | | TC = 28 引线无铅载体 | | | | | X = 18 引线陶瓷浸渍 | | | | | Y = 14 引线陶瓷浸渍 | | | | | Z = 8 引线陶瓷浸渍 | | | | |-------------------- 引线表面处理:| | | | 0 = DIE,引线表面处理为 N/A | | | | 1 = 镀金 | | | | 3 = 浸焊(除非另有说明)| | | |------------------------------ 辐射选项:| | | 0 = 标准产品 | | | 1 = 辐射测试 - 无批次危险,请致电工厂 | | |---------------------------------------- 电气等级:| -000 = 标准裸片 – 致电工厂获取数据表 | | -9XX = “A”, "M"或“U”级 | | -8XX = “B”, "L", “T”或普通级 | | -7XX = “K”或“S”级 | |-------------------------------------------------- 总剂量辐射名称(可选) | MIL-PRF-38535 ¶ 3.4.3 RHA(无中子测试) |------------------------------------------------------------------------ 根据 Analog Devices 航天级数据表 注 1:由于之前的订购系统限制,ADI 交替使用“0”和“-”来表示该部件不合格。
1 20EE8031 20U10307 技术学士课程最佳项目 Sayanti Nayak 对浸渍酯油的老化硅橡胶衬套的物理化学和介电性能的研究
• Dragon 的结构主要由铝制成 • Dragon 的外壳使用碳纤维复合材料来减轻重量同时保持强度 • Dragon 的隔热罩材料是酚醛浸渍碳烧蚀剂 (PICA-X)
锅炉、医院等。浸渍银离子的碳构成了 Puronics 大部分产品线的过滤床。图片来源:Puronics Water System Inc.
渗透深度现场勘察和实验测试表明,Sika® FerroGard®- 903+ 可以每天几毫米的速度渗透混凝土,一个月内渗透深度约为 25 至 40 毫米。渗透速度可能更快或更慢,具体取决于混凝土的孔隙率。Sika® FerroGard®-903+ 可通过液相和气相扩散机制渗透。注意:如果在使用 Sika® FerroGard®-903+ 后,混凝土表面涂有保护涂层(水泥基、丙烯酸或浸渍)或疏水浸渍,则抑制剂的扩散速度会降低但不会停止,因为扩散机制在气相中继续。由于混凝土的质量和渗透性不同,建议通过 Sika®“定性分析”进行一些初步的深度剖面测试,以评估具体的渗透速度。
研究了不同温度下焦耳热对碳纳米管(CNT)薄膜的温度响应和材料变化。结果表明:焦耳热使CNT薄膜升温迅速,最高可达300 o C/s,且稳态温度与功率近似呈线性关系。在长期焦耳加热下,树脂浸渍的CNT薄膜可形成固化良好的CNT复合薄膜。但焦耳加热过程中薄膜温度分布不均匀,且CNT薄膜无法通过简单的压制、拉伸和浸渍等方法改变温度分布。揭示了方块电阻是影响薄膜温度分布的主要因素。此外,250 o C以下焦耳热处理导致CNT薄膜厚度增加10%,电导率降低15%。
有机分子晶体,例如对苯二酚笼状物,可能是很有前途的储氢材料。笼状物是由客体分子(这里是 H 2 )和形成空腔的宿主分子组成的超分子化合物。对苯二酚 (HQ) 与气体(例如 CO 2 1 或 CH 4 2 )的形成在文献中是众所周知的。但是,对于氢气捕获,一些重要的限制限制了这种材料的发展,例如高压和低笼状物形成动力学。Han 等人 3 通过预先形成无客体结构,然后在 350 bar 下用 H 2 填充它,获得了氢 HQ-笼状物。人们还进行了其他尝试来提高对苯二酚笼状物的存储容量,例如添加 C 60 4,但迄今为止尚未发现最佳系统。本研究开发的策略是将对苯二酚浸渍在多孔材料的微孔内,以利用限制效应来启动限制包合物的形成并改善包合动力学。为此,开发了一种新颖的浸渍方法,并在几种具有不同化学性质(碳、聚合物、二氧化硅)和不同孔径(1 至 15 纳米之间)的材料上进行了测试。使用 TGA-DSC、氩气孔隙率仪和 MAS-NMR 来表征新型复合材料。有机晶体的浸渍率可达到混合材料质量的 35%。用磁悬浮天平测量氢的存储容量。对于浸渍在多孔聚苯乙烯基材料中的 HQ 的情况,通过将温度在 0 到 100°C 之间循环可以达到 HQ 包合物的形成。在 20 bar 氢气压力下,经过 10 个温度循环,样品的存储容量从每克样品 0.1 wt.% 增加到每克 HQ 1.3 wt.%(或每克 HQ 7 wt.%)。此外,该系统在室温下稳定,P = 1 bar 氢气压力下,每克 HQ 的存储容量为 5.7wt.% H 2,并且在 100°C 时可完全释放 H 2。使用 MCM-41+HQ 等其他材料也获得了类似的存储容量。