此处提供的信息是在接收者在使用前自行确定其用途适用性的条件下提供的。在任何情况下,Interface Polymers Limited 对于因使用或依赖此处信息或该信息所指产 品而导致的任何性质的损害不承担责任。此处所包含的内容不应被解释为建议使用任何与专利冲突的产品、工艺、设备或配方,且 Interface Polymers Limited 不对使用 这些内容是否侵犯任何专利作出任何明示或暗示的声明或保证
近年来,仿生微纳米技术发展迅猛,为制药和生物医学领域带来了重大进展[1]。此类技术的进步促进了新型材料、工具和设备的开发,并具有多种应用。生物微机电系统 (BioMEMS) 是通过微米和/或纳米级制造工艺构建的设备或系统,用于处理、输送、改变、分析或合成生物和化学单元 [2]。BioMEMS 的跨学科性质使其在从生物医学领域到电气工程等各种领域都有应用,例如基因组学 [3]、分子诊断学、即时诊断 [4]、组织工程 [5]、单细胞分析 [6] 和可植入微型设备 [6]。与传统方法相比,BioMEMS 具有多种值得研究的优势,包括设备尺寸紧凑、移动性强、复制可靠性高、高通量性能、多功能性和潜在的自动化。尺寸较小具有明显的优势,因为这些设备可以小型化,从而降低设备制造成本[7]。此外,BioMEMS 设备还具有多种功能,可以将单独的工具集成到单个设备中。这反过来又促进了自动化分析,最大限度地减少了人工参与,这是此类设备的一个关键方面。这一点至关重要,特别是在处理未知或新发现的严重疾病时。由于其便携性强、重量轻,此类设备非常适合在没有集中实验室的偏远和/或农村地区使用[8]。目前,BioMEMS 是世界上发展最快的技术之一;由于其应用范围,它可能被用于包括医疗保健部门在内的各种行业,特别是医疗机构和医院[9]。自从 20 世纪 90 年代首次使用 BioMEMS 这一术语以来,有关该主题的出版物数量一直在稳步增长[10]。根据 Clarivate Analytics 的数据,每年包含“BioMEMS”作为关键词的引用量从 1900 年代后期的不到 100 次增加到 2021 年的 2400 多次 [11]。BioMEMS 根据其应用分为两大类:一类是为生物医学应用而设计的,例如惯性传感器;另一类是结合微加工 [12] 和微电子方法来获取、感知或操纵化学或生物物质 [13]。生物材料经常用于制造 BioMEMS。它们由生物矿物(维持负荷)和有机材料(提供变形能力)组成。它们中的大多数是不断浸泡在体液中的复合材料,其特性和结构由存在成分的物理和化学性质及其相对量决定 [14]。自组织、自修复能力、复杂结构和多功能性是启发科学家设计新型生物材料的基本特征。它们可以通过应用
本书的主题包括大量信息,适合那些需要更多了解薄膜以用于研究目的或希望使用这种特殊形式的固体材料实现各种应用目标的物理学家、化学家和工程师。这本出版物之所以如此特别,是因为作者提供了他在 20 多年深入研究薄膜方面获得的丰富理论和实践经验。他关注所有会影响最终产品的细节,因此可以非常彻底地描述所有玻璃类型基材的特性,还可以处理有关表面物理的非常困难的问题。玻璃可以通过多种方法生产。制造工艺和化学成分决定了特定玻璃对其环境的抵抗力。还有不同的玻璃表面精加工工艺,这与上述两个因素一起决定了表面特性。除了无机玻璃外,还考虑了有机玻璃和塑料材料。如今,有两种首选的薄膜生产方法:化学气相沉积和真空物理气相沉积;后者的三大技术是溅射、蒸发和离子镀。这些技术都进行了详细讨论。作者的丰富经验使他能够在讨论如何使用适当的真空技术产生具有所需残余气体氛围的真空时提供许多宝贵的建议。他还研究了机械和光学薄膜特性以及薄膜厚度测量方法,这些也包含在本书中。还提供了有关允许开发复杂薄膜系统的计算方法的信息。精确的计算和极其精确的测量是计算机控制涂层系统中生产薄膜的基础。薄膜的应用也在书中占有重要地位。作者所在的公司以其薄膜产品而闻名于世。总之,这本书可以称为由科学家为科学家和技术人员编写的关于玻璃和薄膜主题的处方集。它超出了标题所指示的主题,填补了迄今为止现有技术文献中存在的空白。
热喷涂包含各种看似简单的表面工程工艺,其中固体材料(线材、棒材、颗粒)被等离子射流或燃烧火焰快速加热,熔化并推向要涂覆的基材。 基材表面的熔融颗粒快速凝固,一点一点积聚成一层,该层可具有多种功能,包括防止磨损、侵蚀、腐蚀和热或化学降解。 涂层还可以赋予基材特殊的电、磁或装饰性能。 许多工业领域都采用厚涂层来恢复或获得所需的工件尺寸和规格。 本文在编写时考虑到了材料工程和材料科学专业学生的理论和实践要求。它是根据 1991 年至 1995 年期间在泰国曼谷吞武里国王理工学院能源与材料学院材料工程专业硕士生课堂上以及 1993 年以来在弗莱贝格矿业技术大学技术 (应用) 矿物学专业学生课堂上所讲授的课题发展起来的。作者在 1987 年至 1988 年担任加拿大艾伯塔省埃德蒙顿市艾伯塔研究委员会工业技术部工业产品与材料科科长期间,也积累了等离子喷涂技术方面的经验。
潜在的涂料和功能涂层的颗粒是微塑料(MP)污染的一部分,因为它们在环境样品中的准确鉴定和定量仍然很困难。我们已经采用了微塑料分析领域的最相关技术,以适合其化学表征含有各种聚合物粘合剂(LDIR,RAMAN和FTIR光谱,PY-GC/MS)和无机添加剂(ICP-MS/MS)(ICP-MS/MS)的抗腐蚀涂层。我们介绍了可能研究(海洋)环境中涂层颗粒的释放和命运的可能工具箱的基础。我们的结果表明,由于材料特性,单独的光谱方法似乎不适合定量涂层/油漆颗粒并低估其环境丰度。ICP-MS/MS和优化的PY-GC/MS方法与多元统计结合使用,可以直接比较涂料颗粒的多元和有机添加指纹。该方法可以通过分配给不同典型使用的涂层类型来改善环境样品中未知粒子的识别。将来,这种方法可能
cho,cho-1,cho-k1(上皮,内皮,转染的融合蛋白) L929(成纤维细胞,转染)NIH/3T3,3T3(成纤维细胞)HFOB 1 .19,Mg63(成骨细胞细胞系)MM41(骨骼肌细胞,骨骼肌母细胞,转染,转染)RAW 264 .7(巨噬细胞)(巨噬细胞;骨晶体差异777) (淋巴细胞)U266(淋巴细胞)U937(单核细胞)乳腺癌细胞(已建立的细胞系)HEPG2(HEPATOCYTE)RTG-2(RAINBOW TROUT GONAD细胞)LNCAP LNCAP(前列腺癌细胞系)H1299(转染 - 非毛孔Lung carcly carcl lung carccinoma)(转染)CAC2C CARCACNOMA CAC2C CAC2C CAC2C CAC2C CAC299 MDA-MB-231 MDA-MB 435 PC-3,PC-12 SH-SY5Y SK-MEL-28
所代表的产品适用于工业耐火材料应用。本数据表中的数值和应用信息仅供参考。给出的数值和信息受正常制造变化的影响,如有更改,恕不另行通知。摩根先进材料 - 热陶瓷不保证也不保证产品的适用性,您应寻求建议以确认产品是否适合与摩根先进材料一起使用。
本书的主题包括大量信息,适合那些需要更多了解薄膜以用于研究目的或希望使用这种特殊形式的固体材料实现各种应用目标的物理学家、化学家和工程师。这本出版物非常特别,因为作者提供了他在 20 多年深入研究薄膜方面获得的丰富理论和实践经验。他关注所有对最终产品有影响的细节,因此可以非常彻底地描述所有玻璃类型基材的特性,还可以处理有关表面物理的非常困难的问题。玻璃可以通过多种方法生产。制造工艺和化学成分决定了特定玻璃对其环境的抵抗力。还有不同的玻璃表面精加工工艺,这与上述两个因素一起决定了表面特性。除了无机玻璃,还考虑了有机玻璃和塑料材料。如今,有两种首选的薄膜生产方法:化学气相沉积和真空物理气相沉积;后者的三大技术是溅射、蒸发和离子镀。这些都进行了详细讨论。作者的丰富经验使他能够在讨论如何使用适当的真空技术产生具有所需残余气体氛围的真空时提供许多宝贵的建议。他还研究了机械和光学薄膜特性以及薄膜厚度测量方法,这些也包含在书中。还提供了允许开发复杂薄膜系统的计算方法的信息。精确的计算和极其准确的测量是计算机控制涂层系统中生产薄膜的基础。薄膜的应用在书中也占有重要地位。作者所在的公司因其薄膜产品而闻名于世。总之,这本书可以说是一本由科学家为科学家和技术人员编写的关于玻璃和薄膜的处方集。它超越了标题所指的主题,填补了迄今为止现有技术文献中存在的空白。