补充图8。TEV蛋白酶的HALOTAG-TEV-TITIN消化的代表动力学。(a)用TEV蛋白酶消化PSOAS纤维。消化在不同时间点停止了通过在Laemmli缓冲液中煮沸的等分试样,并通过1.8%SDS-PAGE和COOMASSIE染色分析结果。对应于云蛋白的条带,并指出完整和裂解的钛分子。(b,c)通过光密度测定法定量钛带。nebulin强度用于标准化(黑色,完整的滴定;蓝色圆圈,A频段滴定片段;红色三角形,I频段滴定片段)。实线是指数拟合,表示速率常数。这些数据表明,在30分钟的反应时间,在此特定实验中,Halotag-Tev Titin的消化> 99.9%(n = 1实验分析每个消化时间的一个样本,在6个实验中获得了类似的结果)。
解剖学注释第5节:消化系统消化系统有两个主要组成部分:胃肠道(G.I.)区域以及各种附件结构和器官。G.I.道也称为消化道(“营养”)管道,由从口腔开始的长肌肉管组成,食物进入嘴,继续穿过咽,食管,大肠,大肠和大肠,直肠和肛门,直肠和肛门,浪费被散发为粪便问题。附件结构和器官包括:唾液腺;粘腺;舌头;牙齿肝;胆囊和胰腺。所有这些在消化系统中具有重要功能。沿G.I的长度推动食物。通过G.I.壁上的肌肉层提供的蠕动运动。道。许多附件结构通过分泌酶或物质来帮助该区域,以帮助转化,消化,吸收或运输食物,因为它沿着该区域旅行。胃肠道的主要目的是将大型营养物(聚合物)从摄入的食物中分解为较小的单位(单体)。一旦养分被分解为最小的单位,就可以在上皮上吸收到体内,这些营养素和材料可以通过多种方式使用,包括为人体提供能量。6个基本消化过程1。摄入 - 将食物或饮料带入口腔或口腔。2。推进 - 穿过消化道的运动。3。4。5。6。这包括舌头和脸颊的运动,除了吞咽的肌肉收缩,除了围绕肌肉的蠕动运动和运河产生的空腔所产生的蠕动运动。机械消化 - 食物的物理崩溃(咀嚼,搅动),机械加工和食物的湿润。这是化学消化之前通常需要的。化学消化 - 通过使用人体制造的酶,食物的酶促分解(从复杂到简单的构建块)。这涉及化学键的破裂。吸收 - G.I管腔的消化产物的运输。 穿过上皮衬里以及被认为在体内的血液和淋巴管中。 排便 - 从人体(粪便)中消除了不可消化的材料和废物。 总而言之,机械消化主要发生在口腔和胃中,化学(酶促)消化始于胃(仅蛋白质消化),对于小肠中的所有营养物质而言变得很重要,在小肠中,蛋白质,脂肪和碳水化合物都被一系列enzemes化学地分解为基本的建筑物。 将它们分解为较小的分子(分解代谢),便可以在小肠的上皮上吸收它们,然后进入人体的循环。 大肠在重吸收过量的水和电解质中起关键作用。吸收 - G.I管腔的消化产物的运输。穿过上皮衬里以及被认为在体内的血液和淋巴管中。排便 - 从人体(粪便)中消除了不可消化的材料和废物。总而言之,机械消化主要发生在口腔和胃中,化学(酶促)消化始于胃(仅蛋白质消化),对于小肠中的所有营养物质而言变得很重要,在小肠中,蛋白质,脂肪和碳水化合物都被一系列enzemes化学地分解为基本的建筑物。将它们分解为较小的分子(分解代谢),便可以在小肠的上皮上吸收它们,然后进入人体的循环。大肠在重吸收过量的水和电解质中起关键作用。最后,未消除的材料和分泌的废物产品继续沿着该区域,并通过排便从体内排泄 - 群众运动和消除粪便。
用于生产可再生热能、电力和/或可再生天然气的原始沼气来自被分类为有机和无机部分的进料废料。非有机物被收集并回收。回收的有机物被直接送入厌氧消化。根据有机废物的类型,它可以进行额外的预处理,包括颗粒减小、发酵、热水解和/或化学处理。预处理后,有机废物与其他有机物混合进行共消化。厌氧消化是一种细菌在无氧条件下分解有机物以产生沼气和消化物的过程。原始沼气按体积计算含有大约 55% 至 70% 的甲烷和 30% 至 45% 的二氧化碳,
和缺失分别以+和-表示。i 使用酶StuI对T0纯合突变体进行限制性消化筛选。野生型Solanum etuberosum产生消化的PCR带(蓝色箭头),而突变植物产生对StuI消化有抗性的PCR带。J、k CR-SeSP5G突变体在短日照条件下开花,而野生型在短日照条件下不能开花。比例尺:1厘米;NF,无花。
DOC NIST—STRS 密歇根州立大学厌氧消化研究与教育中心 密歇根州立大学 (MI) 下一代厌氧消化测试和标准开发研究
消化系统在将食物分解为我们身体需要发挥作用的必需营养素中起着关键作用。健康的肠道可确保这些营养素的有效消化和吸收,从而使我们的身体从我们食用的食物中获取最大益处。相反,肠道不平衡会导致各种消化问题,例如腹胀,便秘,腹泻和营养缺乏。因此,保持健康的肠道对于促进适当的消化和确保最佳养分吸收至关重要。
1 韩国首尔顺天乡大学医学院消化系统研究所消化系统疾病中心内科,2 韩国清州忠北国立大学电子工程系,3 韩国高阳东国大学医学院一山医院内科消化内科分部,4 韩国清州忠北国立大学医学院内科,5 韩国济州岛济州国立大学医学院内科,6 韩国首尔首尔市首尔国立大学波拉梅医疗中心内科,7 韩国大田忠南国立大学医学院内科消化内科和肝病内科,8 韩国大邱庆北国立大学医院内科消化内科和肝病内科
抽象的消化性溃疡是全球最常见的胃肠道疾病之一,与诸如难治性发病率,出血,使用抗凝剂的干扰以及与长期使用质子泵抑制剂有关的挑战有关。消化性溃疡是胃或十二指肠粘膜的缺陷,从肌肉粘膜延伸到胃壁的更深层。在大多数情况下,溃疡会对标准治疗做出反应。然而,在某些人中,消化性溃疡在最初成功治疗后对常规治疗具有抵抗力。因此,包括使用干细胞在内的新的和安全的治疗对这些患者非常有利。脂肪衍生的间充质干细胞很容易大量可用,具有最小的侵入性干预,并且依次衍生的间充质基质干细胞(ASC)的分离可产生大量的干细胞,这对于细胞基和恢复性疗法至关重要。这些细胞具有很高的柔韧性,可以在体外区分几种类型的细胞。本文将研究在难治性的消化性溃疡患者中,拟源性组织衍生的间充质干细胞的作用和可能的机制和信号传导途径。关键字:难治性消化性溃疡,消化性溃疡,间充质干细胞,脂肪组织,细胞治疗
大气中二氧化碳(CO 2)的浓度增加,而严格的温室气体(GHG)还原靶标需要开发适用于废物和废水领域的CO 2固相技术。这项研究解决了CO 2排放的减少,并增强了与CO 2富集厌氧消化剂(ADS)相关的沼气产量。通过将CO 2在0、0.3、0.6和0.9 m的分数注射到处理食物浪费或污水污泥的批处理广告中,检查了CO 2富集的益处。每日甲烷(CH 4)的食物废物生产增加了11-16%,在第一个24小时内,污水污泥的污泥为96-138%。据估计,污水污泥的潜在CO 2减少了8-34%,食物浪费的3-11%减少。广告利用其他CO 2的能力被策划了,这可以为CO 2流的现场隔离提供潜在的解决方案,同时增强可再生能源的产生。2014 Elsevier Ltd.保留所有权利。
Dave Parry 博士因在废水、生物固体和能源领域提供行之有效的创新解决方案而享有国际声誉。他在规划、设计、研究以及为废水处理、固体处理和能源项目提供建设和运营援助方面拥有 40 年的经验。他曾担任厌氧消化、共消化、热解、气化和燃烧研究的首席研究员。他曾担任水环境研究基金会共消化项目和环境安全技术认证计划的首席研究员,展示了美国空军将食物垃圾转化为燃料的过程。Parry 博士曾担任水环境联合会残留物和生物固体委员会生物能源技术小组委员会主席。他是已出版的 WEF/EPA/WERF 固体工艺设计和管理手册中关于厌氧消化章节的主要作者。他撰写并发表了 50 多篇技术论文,并就废水资源回收、固体处理、厌氧消化和能源管理举办了许多研讨会。