抽象酵母是一种用于面包制造的酵剂,其中含有酿酒酵母种类的微生物。在面包制造中使用酵母以其实用性和轻松而闻名,但酵母不耐受经常发生。作为替代性,可以使用天然酵母来解决此问题。天然酵母有多种好处,例如增强风味和香气,延长面包的保质期,提高消化率,长时间保持面包柔软度,并没有其他化学添加剂。然而,天然酵母也有一些缺点,例如潮湿且脆弱的质地,这会导致相对较短的存储时间。因此,本研究旨在研究不同的干燥技术对发酵木瓜果水衍生的天然酵母的影响。采用的干燥技术是五天的气干,晒干五天,在40°C下干燥48小时。通过为期5天的空气干燥工艺获得了最佳的酵母,水分含量为13.1%,氮含量为2.07%,乳酸细菌菌落数量为9.50×10 3 cfu/g,平均偏好率为3.92的平均偏好等级为3.92,呈现为3.92。此外,干燥的酵母已成功重新激活,体积从3厘米的初始高度膨胀3倍,至9 cm。
摘要 - 鸡肉是最常见的养殖物种,每年生产超过900亿吨鸡肉。每天为许多产生食物的动物提供抗生素,以更快地生长并预防世界许多地方的疾病。当将抗生素用于生长促进目的时,与治疗用途相比,通常会施用少量。因此,这可能导致细菌发展抗生素抗性(世界卫生组织,2017年)。有几种与无抗生素的鸟类生产有关的挑战。抗生素的几种替代方法,包括益生菌,益生元,竞争排除,酶和有机酸,在替代抗生素方面有希望。使用益生元的使用有助于通过有害病原体来防止消化系统的定殖,这是通过通过肠道含量改变而创造不利的环境来实现的。益生菌是严格选择的微生物的活菌株对健康具有有益的影响。在家禽饮食中掺入酶具有多种优势,包括降低的消化粘度,改善的消化率和营养吸收,增加饲料摄入量以及增强体重的增长。最大程度地提高性能和维持家禽生产率将依赖于采用均衡的不同替代方案以及有效的管理实践的组合。这种方法对于实现减少抗生素使用的最终目标仍然至关重要。
生物技术利用包括微生物在内的生物系统生产出改善人类生存的产品。食品发酵是生物技术中众所周知的技术,它通过营造有益微生物战胜危险疾病的环境来帮助保存食物。发酵食品极其重要,因为它们提供并保存了大量营养丰富的食物,这些食物具有各种风味、气味和质地,丰富了人类的饮食。自从人类来到地球以来,这一过程就一直在使用和存在。在烹饪界,发酵以各种方式用于生产各种各样的食物和饮料。细菌发酵赋予酸奶和奶酪等乳制品质地和风味,而酵母则利用碳水化合物制作面包和酒精饮料。值得注意的是,发酵通过提高营养物质的生物利用度、合成维生素和产生生物活性化学物质,有助于发酵食品的健康益处。发酵通过营造有益微生物可以战胜危险疾病的环境来帮助保存食物。它还可以减轻某些食物的过敏性并抵消抗营养影响。发酵过程中微生物群落的动态相互作用使世界各地的烹饪传统变得多样而独特。本章讨论了微生物如何与食物相互作用以延长其保质期、确保其微生物安全性,甚至可能改善某些食物的消化率的技术。关键词:发酵;生物技术;生物活性;微生物;营养素
在动物肠道中未被宿主使用的铁可以直接由微生物(尤其是有害的生物)使用。有机铁(例如Fe-Gly)在体内具有较高的消化率和吸收效率。目前尚不清楚它是否可以减少ETEC对铁的利用,从而减轻ETEC感染造成的伤害。该实验主要研究将Fe-gly添加到饮食中对被ETEC感染的断奶小猪的生长性能,铁营养状况和肠形态的影响。研究发现,在饮食中增加50 mg的Fe-gly会显着增加30.6和35.3%(p <0.05),并减轻了腹泻问题,并降低了ETEC感染引起的生长绩效。腹泻率降低了40%(从31.25%降低至18.75%)。除了保护小猪的健康外,添加Fe-gly还可以提高Piblet血清中的TIBC水平(P <0.05),从而增强了它们结合和转运铁的能力。从基因表达结果和组织段结果中,添加Fe-Gly也可以减轻ETEC挑战在某种程度上引起的空肠的损害(p <0.05)。总而言之,增加50毫克的Fe-gly可以满足小猪的每日需求,提高铁的利用效率并减少肠中的残留铁。这减少了用于肠道病原性微生物的铁,从而抑制了肠道病原体的增殖并确保小猪的肠道健康。
“ nano”,它源自拉丁语nanus并表示矮人,它是指一个非常小的测量单位,等于一亿米的十亿分。纳米技术在原子和分子水平上处理物质的操纵,在畜牧业和许多领域都有一个应用领域。纳米大小的饲料添加剂近年来一直处于牲畜领域的最前沿,已成为一种创新应用,用于增加饲料的营养价值并优化动物健康和性能。由于这些添加剂是纳米大小的颗粒,其表面积增加,因此它们可能对许多因素产生积极影响,例如消化率,营养吸收,免疫系统,生长和发育。与较大的颗粒相比,用作饲料添加剂的纳米颗粒形式的矿物质可以通过穿过肠壁到身体细胞来增加生物利用度。该物质的纳米水平不仅提高了动物的生产率,而且还带来了提高进料分子功能的潜力。纳米饲料添加剂增加了饲料的消化和吸收,使动物可以从饲料中受益。但是,这种方法存在一些挑战。这些包括可能产生内毒素,由于与天然养分的相互作用而减少的养分吸收,动物体内纳米颗粒积累的可能性,健康风险,道德考虑,环境问题以及一些负面影响,例如干扰与天然养分的干扰,这些养分可以通过包含的包含来避免。本文讨论了有关纳米尺寸的饲料添加剂的最新研究,这些添加剂可为动物营养提供潜在的好处。
APCC,动物毒物控制,2023。disponivel em:https://www.aspca.org/pet- care/abinal-poison-control。Acesso EM:20/03/2023。Allen,D。H.,Van Nunen,S.,Loblay,R。等。对食物的不利反应。澳大利亚医学杂志V.5,第37-42页,1984年。Arnaud,M.J。动物和人类天然甲基黄嘌呤的药代动力学和代谢。手。EXP。Pharmacol。V.200,p33–91,2011。Beynen AC。宠物食品中的绿茶提取物。Bonny Canteen,V.1,P.8-15,2020。Carciofi,A.C。;等。 六个碳水化合物源对狗饮食消化率以及餐后葡萄糖和胰岛素反应的影响。 J. Anim。 生理学。 anim。 Nutr,V.92,p.3266–336,2008。 Craft,E.M.,Powell,L.L。 巧克力和咖啡因。 in:Osweiler G,Hovda L,Brutlag A,Lee JA,编辑。 Blackwell的五分钟兽医咨询临床伴侣:小动物毒理学,第421-428页,2011年。 Craig,J。M.狗和猫的食物不耐受。 《小动物实践杂志》,第2卷,第77-85页,2019年。https://doi.org/10.1111/jsap.12959 Dawra,R.,Sah,R.P.,Dudeja,Dudeja,V.,Rishi,Rishi,Rishi,Rishi,L. 刺激性胰蛋白酶原激活介导急性胰腺炎小鼠的胰腺损伤的早期阶段,但没有炎症。 胃肠病学,第141页,第2210–2217页,2011年。 Eteng,M。等。 咖啡因和神现毒性的最新进展:综述。 Fredholm,B.B。 ;施普林格:纽约,p。 1–9,2011。Carciofi,A.C。;等。六个碳水化合物源对狗饮食消化率以及餐后葡萄糖和胰岛素反应的影响。J. Anim。生理学。anim。Nutr,V.92,p.3266–336,2008。Craft,E.M.,Powell,L.L。巧克力和咖啡因。in:Osweiler G,Hovda L,Brutlag A,Lee JA,编辑。Blackwell的五分钟兽医咨询临床伴侣:小动物毒理学,第421-428页,2011年。Craig,J。M.狗和猫的食物不耐受。《小动物实践杂志》,第2卷,第77-85页,2019年。https://doi.org/10.1111/jsap.12959 Dawra,R.,Sah,R.P.,Dudeja,Dudeja,V.,Rishi,Rishi,Rishi,Rishi,L.刺激性胰蛋白酶原激活介导急性胰腺炎小鼠的胰腺损伤的早期阶段,但没有炎症。胃肠病学,第141页,第2210–2217页,2011年。Eteng,M。等。 咖啡因和神现毒性的最新进展:综述。 Fredholm,B.B。 ;施普林格:纽约,p。 1–9,2011。Eteng,M。等。咖啡因和神现毒性的最新进展:综述。Fredholm,B.B。;施普林格:纽约,p。 1–9,2011。V.3,第231–243页,1997年。在甲基氧剂中; Fredholm,B.B。编辑。Fink,F。和Guiton,S。巧克力中毒。医学医学,第331页,第633页,2005年。收集vv。诊所应用培养基两种酸。in:当前R,CK CK,mynasty,社论。访问华丽的:评估。圣保罗:Manole,第439-54页,2002年。 缺乏,路径的病理学,画廊,肝外胆道和安帕莱地区;圣保罗:Manole,第439-54页,2002年。缺乏,路径的病理学,画廊,肝外胆道和安帕莱地区;
缺乏富含营养的饲料和草料是牲畜种植的问题之一。足够的耕作作业,及时且合适的水管理,杂草管理,虫害和疾病管理,肥料管理,以适当的时间和种子速率,及时收获以及其他农艺技术的播种,都可以帮助增加饲料和草料作物的营养含量和产量。在本研究中已系统地审查了许多研究和审查论文。与零耕种相比,耕作练习(例如原发性,次要,常规和深耕种)可以增强绿色饲料的干物质和产量。饲料作物的有机物(OM)含量和干物质(DM)通过常规且适当的灌溉增加。早期收获的草料的DMD(干物质消化率)和CP(粗蛋白)含量高于最近收获的草料的含量。氮的应用促进了农作物的发育和生长,增加了绿色饲料的产量并提高了其质量。间作对于增加饲料作物的产量至关重要。与玉米和牛豆的唯一种植相比,在玉米 +牛豆间的间作中发现产量更高。饲料的产量和质量通过晚期播种而降低。虫害和疾病的管理可增强饲料和草料的产生和质量。因此,我们得出一个结论,即饲料和草料作物的生产及其质量参数受农艺实践的极大影响。关键字:品种,种子速率,播种,灌溉,切割时间
摘要:水产养殖是世界上生长最快的粮食领域,可为人类食用而产生超过一半的鱼类。水产养殖饲料包括从沙丁鱼等野生鱼类中提取的纤维化和油炸油,并带来生态,粮食安全和经济弊端。微藻,酵母,真菌,细菌和其他替代成分在提供蛋白质/氨基酸,脂质或omega-3来源和生物活性分子来源的水上成分中表现出了有希望的成分。本评论文章讨论了文献经常缺乏数据的问题,例如最近使用微生物,技术创新,挑战和机会来发展水产养殖饮食的低环境足迹。这些成分通常需要新颖的加工技术来提高消化率和鱼类的生长并减少抗逆转因素。这是对填充的重要差距,因为微藻是饲料中最常用的有机体,尤其是作为饮食补充剂或与其他成分混合的。生产,加工和配方步骤可能会影响营养品质。需要逐步策略来评估这些成分以供饲料应用,在本文中,我阐明了评估营养和环境反应指标的逐步关键方法,以使用这些微生物来开发高度可持续的含水饲料,这将指导对这些新颖成分的更为明智地包含这些新颖的成分。
促进和维持饲料摄入量:一致的饲料摄入量对于微生物发育至关重要。早期获得固体饲料有助于建立多样的微生物组。原材料连续性:饲料组成的变异性会破坏微生物群落,导致营养不良。建议采用较低纳入水平的各种成分的逐步变化方法。调节摘要转运时间:消化通过胃肠道影响的速率可促进营养吸收和微生物定殖。优化过境时间的策略,例如增加粒径并掺入不溶性纤维,可以通过使利益微生物繁殖来增强营养消化率并促进健康的微生物组。馈线访问:足够的供您访问量鼓励定期进食行为,支持一致的营养摄入量和微生物活动。频繁进食可以帮助维持有助于微生物生长的稳定肠道条件。惰性文件:有助于维持肠道运动,并为有益细菌提供底物,从而有助于平衡的微生物组。最大程度地减少压力:压力会对肠道完整性和微生物平衡产生负面影响,从而增加对感染和其他健康问题的敏感性。限制使用抗生素有助于保留天然肠道菌群,这对于维持健康和预防疾病至关重要。使用抗生素会导致营养不良,使猪更容易受到感染和损害免疫反应。
水产养殖中的蓝色食物对于弥合蛋白质差距以在未来养活人群中至关重要。但是,要使水产养殖的生产具有可持续性,生产必须在行星范围内,而可持续原材料的采购是可持续生产中的关键驱动力。本文探讨了源自aquafeeds中微生物的单细胞蛋白(SCP)的作用。讨论了三个主要方面:可持续性,发酵技术的可扩展性和效果。此外,通过彩虹鳟鱼(Oncorhynchus Mykiss)的全面概念验证试验,本文证明了SCP在不影响生长和健康的情况下取代传统饲料成分方面的效率。该试验的发现表现出高蛋白质的消化率和平衡的氨基酸方面,以及通过氧化爆发反应测量的健康受益。迄今为止,SCP的商业采用受到了高生产成本的阻碍,并且需要大量投资来扩展发酵技术。但是,随着大型行业参与者公开致力于可持续性目标,可持续性格局正在发生变化,并意识到需要对未来的长期和投资思维。总而言之,SCP成为可持续水上航空的有前途的途径,为行星边界内的蛋白质供应挑战提供了解决方案。此外,就环境福利而言,SCP在土地使用,碳排放,生物多样性影响和用水方面显示出明显的优势。最终,将SCP成功整合到Aquafeeds中可能会为该行业的可持续发展目标做出重要贡献,并在确保未来的原材料蛋白质供应方面发挥着重要作用。