摘要 简介:深部脑刺激 (DBS) 是治疗各种神经和精神疾病的常用方法。最近的研究强调了神经影像学在定位电极触点相对于目标脑区的位置以优化 DBS 编程方面的作用。在不同的成像方法中,术后磁共振成像 (MRI) 已广泛用于 DBS 电极定位;然而,导线引起的几何失真限制了其准确性。在这项工作中,我们调查了导线尖端的实际位置与从 MRI 伪影估计的尖端位置之间的差异在多大程度上取决于 MRI 序列参数(例如采集平面和相位编码方向)以及导线的颅外配置。据此,设计并讨论了一种提高导线定位准确性的成像技术。方法:我们设计并构建了一个拟人化幻影
近年来,RNA 测序激发了大量的研究领域。大多数方案依赖于在逆转录反应过程中合成更稳定的 RNA 分子互补 DNA (cDNA) 拷贝。结果 cDNA 池经常被错误地认为在数量和分子上与原始 RNA 输入相似。遗憾的是,偏差和伪影会混淆结果 cDNA 混合物。依赖逆转录过程的人们在文献中经常忽视或忽略这些问题。在这篇评论中,我们向读者展示了 RNA 测序实验过程中逆转录反应引起的样本内和样本间偏差和伪影。为了打消读者的疑虑,我们还提供了大多数问题的解决方案并介绍了良好的 RNA 测序实践。我们希望读者能够利用这篇评论,从而为科学合理的 RNA 研究做出贡献。
贸易/设备名称:uAI Easy Triage ICH 法规编号:21 CFR 892.2080 法规名称:放射计算机辅助分类和通知软件 监管类别:II 类 产品代码:QAS 日期:2024 年 8 月 1 日 收到日期:2024 年 8 月 2 日 亲爱的 Nima Akhlaghi: 我们已审查了您根据第 510(k) 节提交的上市前通知,该通知表明您有意销售上述设备,并已确定该设备与在 1976 年 5 月 28 日(医疗器械修正案颁布日期)之前在州际贸易中合法销售的同类设备基本等同(就附件中所述的用途而言),或与根据《联邦食品、药品和化妆品法案》(该法案)的规定重新分类的设备基本等同,这些设备不需要获得上市前批准申请 (PMA) 批准。因此,您可以营销该设备,但须遵守该法案的一般控制规定。虽然本函将您的产品称为设备,但请注意,一些已获准的产品可能是组合产品。510(k) 上市前通知数据库(网址为 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm)可识别组合产品提交。该法案的一般控制条款包括年度注册、设备列表、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不会评估与合同责任担保相关的信息。但我们提醒您,设备标签必须真实,不得误导。如果您的设备被归类(见上文)为 II 类(特殊控制)或 III 类(PMA),则可能会受到其他控制。影响您设备的现有主要法规可在《联邦法规》第 21 篇第 800 至 898 部分中找到。此外,FDA 可能会在《联邦公报》上发布有关您设备的进一步公告。有关可能需要新的上市前通知的变更的其他信息,请参阅 FDA 指导文件《决定何时提交 510(k) 以更改现有设备》
投标材料将于下述期间内由自卫队京都地方合作本部总务部会计科分发。 2022年6月16日~2022年6月29日 17:00(09:00~17:00 周六、周日及节假日除外) 3.投标方式 在确定中标人时,中标价格为投标表格中填写的金额加上该金额的10%(如果该金额有小于1日元的尾数,则该尾数将四舍五入)。因此,无论投标人是消费税和地方消费税的纳税企业还是免税企业,投标人都必须在投标表格中填写估算金额(不含消费税)的110/100。 4. 无效投标 (1) 不具备第 1 款规定的参加投标所需资格的人员所作的投标。 (2) 违反投标条款和条件的投标。 (3) 投标金额、投标人名称和印章印记难以确定的投标。
摘要:河流生态系统已经适应了整个季节的自然放电变化。14然而,证据表明气候变化已经影响了15河流量季节性的幅度,仅限于本地研究,主要集中于平均或极端16个流量的变化。这项研究介绍了将分配熵用作可靠的措施来评估整个季节的17流量不均匀性,从而实现了全球分析。我们发现,在18个长期河流测量站中,约有21%的季节性流量分布发生了重大变化,但其中三分之二与年平均排放趋势无关。通过将20个数据驱动的径流重建与最先进的水文模拟相结合,我们确定了北部高纬度地区(高于50°N)的河流流量季节性的21个可分离弱化,这是一种与人为气候强迫直接相关的现象。23
摘要 脑电图 (EEG) 信号是神经科学研究和临床应用(如脑机接口和神经系统疾病诊断)的基础。这些信号通常是神经活动和噪声的组合,来自各种来源,包括眼球和肌肉运动等生理伪影。在这种情况下,我们解决了区分神经活动和噪声相关来源的挑战。我们开发了一种在频域中运行的新型 EEG 去噪模型,利用有关噪声频谱特征的先验知识自适应地计算用于噪声分离的最佳卷积滤波器。该模型经过训练可以学习一种经验关系,将噪声和噪声信号的频谱特性与允许信号去噪的非线性变换联系起来。在 EEGdenoiseNet 数据集上的性能评估表明,所提出的模型根据时间和频谱指标都实现了最佳结果。发现该模型可以从输入的 EEG 数据中去除生理伪影,从而实现有效的 EEG 去噪。事实上,该模型的性能与基准模型相当甚至更好,证明可以有效去除肌肉和眼部伪影,而无需对特定类型的伪影进行任何训练。
通过脑皮层电图 (ECoG) 进行皮层刺激可能是在双向脑机接口 (BD-BCI) 中诱导人工感觉的有效方法。然而,电刺激引起的强电伪影可能会显著降低或掩盖神经信息。详细了解刺激伪影通过相关组织的传播可能会改进现有的伪影抑制技术或启发开发新的伪影缓解策略。因此,我们的工作旨在全面描述和模拟硬膜下 ECoG 刺激中伪影的传播。为此,我们收集并分析了四名患有癫痫并植入硬膜下 ECoG 电极的受试者的雄辩皮层映射程序数据。从这些数据中,我们观察到伪影在所有受试者的时间域中都表现出锁相和棘轮特性。在频域中,刺激导致宽带功率增加,以及基频刺激频率及其超谐波的功率爆发。伪影的空间分布遵循电偶极子的电位分布,在所有受试者和刺激通道中,拟合优度中值为 R 2 = 0.80。高达 ± 1,100 µ V 的伪影出现在距离刺激通道 4.43 至 38.34 毫米的任何地方。这些时间、光谱和空间特性可用于改进现有的伪影抑制技术,启发新的伪影缓解策略,并有助于开发新的皮质刺激方案。总之,这些发现加深了我们对皮质电刺激的理解,并为未来的 BD-BCI 系统提供了关键的设计规范。
摘要:基于脑电图的脑机接口 (BCI) 具有超越传统神经反馈训练的广阔治疗潜力,例如实现个性化和优化的虚拟现实 (VR) 神经康复范例,其中视觉体验的时间和参数与特定大脑状态同步。虽然 BCI 算法通常被设计为专注于信号中信息量最大的部分,但在这些大脑状态同步的应用中,至关重要的是,最终的解码器对代表各种心理状态的生理大脑活动敏感,而不是对诸如自然运动产生的伪影敏感。在本研究中,我们比较了从提取的大脑活动和 EEG 信号中包含的伪影中解码不同运动任务的相对分类准确度。在基于 VR 的逼真神经康复范例中,从 17 名慢性中风患者身上收集了 EEG 数据,同时执行六种不同的头部、手部和手臂运动。结果表明,在分类准确度方面,EEG 信号的伪像成分比大脑活动的信息量大得多。这一发现在不同的特征提取方法和分类流程中是一致的。虽然可以通过适当的清理程序恢复信息性脑信号,但我们建议不要仅将特征设计为最大化分类准确度,因为这可能会选择剩余的伪像成分。我们还建议使用可解释的机器学习方法来验证分类是否由生理脑状态驱动。总之,虽然信息性伪像在基于 BCI 的通信应用中是一个有用的朋友,但它们在估计生理 32 脑状态时可能是一个麻烦的敌人。33
基于材料和方法观察数据集1月1个月度流动时间序列(根据每日记录计算)是从2个全球流量指数和元数据存档(GSIM)获得的(18,47)。全球径流数据3中心(48)(GRDC)数据库,以每月规模提供河流流量,该数据库被4 GSIM排除,用作补充数据集。要计算具有最小偏差的RF,制定了两个5个选择标准:i)研究期限从1965年到2014年,以确保6个足够的站点进行空间覆盖范围的足够分析; ii)每月排放量仅在每年8个月可用10个月或更长时间的数据时才能计算年度季节性指数。鉴于气候迅速变化,我们通过将五个定期更新的河流流量数据集(表S3)从国民到2017 - 2019年全球水平结合在一起,扩展了分析,以包括最近的9年。拥有国家或11个大陆数据库的国家/地区的所有GRDC站(例如USGS数据)被替换,以避免重复的时间12系列河流。13为了获得全球范围的覆盖范围,使用了最近发表的全球栅格每月14个径流(Grun)数据集的重建(19)。Grun是从GSIM的原地15个月度河流流量观测到的,其空间分辨率为0.5°,涵盖了1902年至2014年的16个时期(19)。它是通过训练基于全球土壤湿度的降水和温度观察的机器学习算法的17阶段(GSWP3)数据集(19)的训练,因此,Grun无法明确考虑19的效果。S17)。观察到来自GRDC数据集的每月河流排放,并从部门间影响模型对比21项目(ISIMIP2A)重建的2A阶段的20个多模型模拟用于验证(19)。在新出版的G-Run合奏中的另外四个成员22在1965 - 2014年重叠,用来23个说明了径流上大气强迫数据集的不确定性,包括径流24次被CRUTSV4.04,GSWP3-W5E5,GSW3-W5E5,GSWP3-EEMBI和PGFFV3 25(49)强迫。与G-Run合奏的AE趋势的空间模式与Grun 26支持使用Grun进行气候变化检测和归因分析,而27进一步证实了我们结果的鲁棒性(图总而言之,原位观察结果28结合了气候变化的影响(包括ACC,自然强迫和自然29气候变化)和人类活动(例如储层,人类水管理和30种土地利用变化,缩写为HWLU)。相反,Grun和G-Run Ensemble仅31个说明了气候变化的影响。为了排除储层对原位观测值的RFS趋势的空间32模式的影响,水合物subbasin单元(PFAFSTETETER 33级别12)(50)与Grill等人提供的调节程度(DOR)集成在一起。(51)至34个将量规站区分为受储层影响(DOR> 0)的量规站,以及由储层(dor = 0)受到影响的35个。subbasin单位水平的DOR通过在河流范围内选择DOR的36个最大值来表示。使用了1965年至2014年期间的5×5°分辨率的crutem5数据集的平均空气温度数据(55)。有6,150个站点从储层影响中确定为37个,而3,914个站位于sibbasins或38个水库的下游(有49个车站由于在39个岛屿上的存在,而另外7个缺乏DOR信息的车站,因此位于水力发生范围外的49个站点)。在1979 - 2000年的平均降雪与降水量41的比例(52)时,全球范围内的40个降雪区域(52)都在全球范围内确定,其中包含0.5°的全球42降水量和降雪通量。2014年降雪时间序列的时间序列是根据全日制44覆盖率的第五代大气再分析(ERA5)计算得出的(53)。为排除降水季节性,观察到的每月栅格降水45来自全球降水气候中心(GPCC)(54)的数据以2.5×46 2.5°的分辨率在1965-2014时以每月量表为单位。48