摘要 提出了一种用于快速检测IGBT去饱和短路的自适应消隐时间(SABT)电路。在IGBT正常开通或发生负载故障(FUL)时,通过检测IGBT集电极-发射极电压V CE 的变化来实现消隐时间的确定;而当IGBT发生硬开关故障(HSF)时,通过检测栅极电压V GE 来确定消隐时间。利用UMC 0.6μm 700V工艺进行仿真表明,提出的SABT电路能够快速检测FUL和HSF。与传统消隐时间电路相比,SABT电路可以将FUL的故障检测时间从1.3μs缩短到35.5ns,而HSF条件下的故障检测时间从2.329μs缩短到294ns。 关键词:消隐时间,IGBT,去饱和短路保护 分类:功率器件与电路
・每位学生阅读论坛中提交的意见,并在纸质工作表上写下五种令他们印象最深刻的意见。 ・让学生花足够的时间阅读朋友的意见并仔细阅读。 *特意关闭鼓掌功能,让学生在工作表上写下自己的意见,以便学生仔细阅读。 *卡片上的名字被隐藏,以便学生可以不带先入之见地阅读。 ・在工作表上写下自己的意见后,学生打开鼓掌功能并为自己选择的意见鼓掌。显示卡片上的名字,重新排列卡片以便鼓掌,然后将卡片分享给全班。学生在查看谁写了这些意见后发表自己的意见,例如说“我很惊讶那是XX先生的意见”,或“我和XX先生有同样的看法”。
1、CT特异性反应;2、无添加对照;3、10μg/ml CuCl2;4、20mM F-6-P和10μM CuCl2(pi
衰老与各种器官和组织的功能下降有关,并且对各种日常应力的反应不足会导致与年龄相关的疾病。因此,在老龄化的社会中,衰老是各种疾病和重要研究主题的危险因素。据报道,患有细胞衰老的细胞(衰老细胞)积聚在体内各种组织中,并可能导致生理衰老。此外,已经表明,在转基因小鼠中选择性消除表达P16的细胞可降低与衰老相关的疾病并延长寿命。鉴于这些实验结果,靶向体内的衰老细胞是预防和治疗与年龄相关的疾病的有吸引力的策略。在这篇综述中,我们将总结当前对细胞衰老基本特征及其与年龄相关疾病的关系的知识。我们还将总结新兴的治疗策略,包括消除衰老细胞的药物(消除衰老细胞)和鼻型药物(调节衰老细胞的药物),并引入了最新发现和临床翻译。
[方法] 通过将I-PpoI STOP/+小鼠与Cre ERT2/+小鼠杂交产生ICE小鼠。这些老鼠被给予他莫昔芬。
图1。高度致病性的自身反应性CD4阳性T细胞(CXCR6阳性和SLAMF6阴性)表达miR-147-3p,抑制了趋化因子受体CXCR3的表达,并发挥了致病性。
化学和生物学的水污染物的复杂性需要有效且可行的治疗方法。在此,使用氮化碳催化剂的光催化臭氧处理有效地用于消除靶向化学污染物的混合物,以及在实际的次级含水量中的大肠杆菌细菌和人类多瘤病毒JC(JC病毒)。在使用尿素和三聚氰胺作为前体制备的催化剂中比较了去角质处理。物理治疗没有明显增强基于尿素的催化剂,而三聚氰胺基(36MCN)材料的结构的改善和MELEM异质结的形成增加了其催化特性。在两组污染物中,光催化的臭氧化系统都优于光解臭,尤其是在臭氧消耗方面。最好的催化剂36mcn,导致消除化学,细菌和病毒污染物所需的臭氧剂量下降57.5%,33.0%和29.0%。羟基自由基还显示为污染物消除的钥匙。臭氧的较高的自由基生产和分解是可能的迹象表明,石墨氮化碳光催化臭氧化的性能更好,这是有效的第三级废水替代方案。
量子密钥分发 (QKD) [1,2] 开创了两个远距离通信方 (通常称为 Alice 和 Bob) 在窃听者 (称为 Eve) 面前共享密钥的全新方式。自第一个 QKD 协议——BB84 协议 [1] 提出以来,QKD 已成为量子信息技术的关注焦点 [3,4]。QKD 的无条件安全性已通过不同方法得到证明 [5–7],该安全性由量子力学定律保证。在传统的 BB84 协议之后,各种类型的新型 QKD 协议相继被提出。其中,高维量子密钥分发 (HD-QKD) 因具有在单个光子上编码多个比特的出色能力以及对信道噪声的强容忍度而备受关注。在高维量子密钥分发系统中,信息被编码在量子态的高维自由度上,如时间能量纠缠[8–10]、时间箱编码[11,12]、路径[13,14]和轨道角动量[15–17]。HD-QKD协议的安全性证明也已建立[18–20]。随着高维量子态制备和测量技术的发展,近年来不同的HD-QKD方案取得了许多突破性的成果[21–23]。其中,基于时间箱的HD-QKD方案[11,23]实现了创纪录的密钥速率,并且可以抵御一般的相干攻击。不幸的是,现实的QKD系统中的实际设备往往存在缺陷,很少符合理论安全模型[24,25]。因此,QKD的理论和实践之间始终存在差距。在过去的几十年里,QKD系统的实用安全性得到了广泛的研究。窃听者可以窃取
........................................................................................................................... 81 图 3-20 层次化质量保证中使用质量与外部质量项目设置的定位 ...................................................................................................... 83
⯡䛻䠈≉ᐃ䛾䝍䝇䜽䜢ᐇ⾜䛩䜛䛸䛔䛖ᙺ䜢䛘䜙䜜䠈䛭䜜䜢ᐇ ⾜䛩䜛䜒䛾䛷䛒䜛䛛䜙䠈 responsibility 䜢ᯝ䛯䛩䜒䛾䛷䛒䜛䛸ゝ䛘 䜛䠊䛭䜜䛻ᑐ䛧䛶䠈 accountability 䛿ேᕤ䝅䝇䝔䝮䛻䛿ᮇᚅ䛥䜜 䛶䜒䛔䛺䛔䛧䠈ᯝ䛯䛥䛺䛔䛸䛔䛖䛾䛜⌧≧䛷䛒䜛䛸ゝ䛘䜛䠊 ᮏㄽᩥ䛷䛿䠈௨ୖ䛾ព䛷䛾 accountability 䠄ㄝ᫂㈐௵䠅䜢 ᣢ䛱䛖䜛 AI 䜶䞊䝆䜵䞁䝖䜢ᵓ⠏䛧䠈䛭䜜䛜♫䛻ཷ䛡ධ䜜䜙䜜 䜛䠄㈐௵䜢ᯝ䛯䛩䛣䛸䜢ᮇᚅ䛥䜜䜛䠅䛣䛸䛜䛒䜚䛘䜛䛛䛻䛴䛔䛶㆟ ㄽ䛩䜛䠊 [High Level Expert Group on Artificial Intelligence 19] 䛻䜘䜛 䛸䠈 accountability 䠄ㄝ᫂㈐௵䠅䛻㛵䛧䛶⪃៖䛩䜉䛝ほⅬ䛸䛧䛶௨ ୗ䛾䠐䛴䛜ᣲ䛢䜙䜜䛶䛔䜛䠖 y ┘ᰝᢸᙜ⪅䛻䜘䜛䠈䜰䝹䝂䝸䝈䝮䜔䝕䞊䝍䜔タィ䝥䝻 䝉䝇䛻ᑐ䛩䜛┘ᰝྍ⬟ᛶ (auditability) y ㈇䛾ᙳ㡪䛾᭱ᑠ䛸ሗ࿌ (minimization and reporting negative impacts) y 䝖䝺䞊䝗䜸䝣 (trade-offs) y ⿵ൾ (redress) 䛣䜜䜙䛿䠈 AI 䜢㛤Ⓨ䛩䜛ே䜔⤌⧊䛜ᯝ䛯䛩䜉䛝✀䚻䛾ㄝ᫂ 䛸䛧䛶ิᣲ䛥䜜䛶䛔䜛䛜䠈ᮏㄽᩥ䛷䛿䠈 AI ⮬య䛻ㄝ᫂㈐௵䜢ᣢ 䛯䛫䜛䛣䛸䜢⪃䛘䜛䠊䛣䛾䛯䜑䠈ㄝ᫂䜢ᐇ⾜䛩䜛䛾䛿 AI ⮬య䛷 䛒䜛䠊ᮏㄽᩥ䛾ᚋ༙䛷ᥦ䛩䜛ື⏬᥎⸀ AI 䜶䞊䝆䜵䞁䝖䛷䛿䠈 ᥎⸀䛧䛯ື⏬䛜㐺ษ䛷䛒䛳䛯ሙྜ䠈䜶䞊䝆䜵䞁䝖䛿䛺䛬䛭䛾 䜘䛖䛺ែ䜢ᣍ䛔䛯䛛䠈Ⓨ㜵Ṇ䛾䛯䜑䛻䛹䛖䛩䜛䛛䜢⮬䜙ㄝ᫂ 䛩䜛䠊 Ẹἲ䠓䠌䠕᮲䛷䛿䠈䛂ᨾពཪ䛿㐣ኻ䛻䜘䛳䛶ே䛾ᶒཪ䛿 ἲᚊୖಖㆤ䛥䜜䜛┈䜢ᐖ䛧䛯⪅䛿䠈䛣䜜䛻䜘䛳䛶⏕䛨䛯ᦆ ᐖ䜢㈺ൾ䛩䜛㈐௵䜢㈇䛖䠊䛃 䛸つᐃ䛧䛶䛔䜛䠊䛣䜜䛿 accountability 䠄ㄝ᫂㈐௵䠅䛾୍䛴䜢つᐃ䛧䛶䛔䜛䛸⪃䛘䜙䜜䜛䠊 ୍⯡ⓗ䛻䛿䠈ㄝ᫂㈐௵䛾䛸䜚᪉䛸䛧䛶䛿䠈ㅰ⨥䛩䜛䠋ฮ⨩䜢 ཷ䛡䜛䠋ᶒ䜔ᆅ䜢ᡭᨺ䛩䠋㈺ൾ䛩䜛➼䛜䛒䜚䛘䜛䠊ᮏㄽᩥ 䛾ᚋ༙䛷ᥦ䛩䜛ື⏬᥎⸀ AI 䜶䞊䝆䜵䞁䝖䛷䛿䠈䛣䛾䛖䛱䛾 䛂ㅰ⨥䛩䜛䛃䛣䛸䜢ᐇ䛧䛯䠊ᶒ䜔ᆅ䜢ᡭᨺ䛩䛣䛸䛾୍✀䛸䛧 䛶䠈᥎⸀䜢᥍䛘䜛䛣䛸䜒䛒䜚䛘䜛䠊 䛂ฮ⨩䜢ཷ䛡䜛䛃䛣䛸䛜 AI 䛾㈐௵䛾䛸䜚᪉䛸䛧䛶䛒䜚ᚓ䜛䛛䛻 䛴䛔䛶䛾㆟ㄽ䜒⯆῝䛔䛜䠈ᮏㄽᩥ䛷䛿䛣䜜௨ୖ䛿ゐ䜜䛺䛔䠊 AI 䛜䛂㈺ൾ䛩䜛䛃䛣䛸䛿䠈 AI ྥ䛡䛾㈺ൾ㈐௵ಖ㝤 (liability insurance) 䠄䛯䛸䛘䜀 [ ᪥ᮏ䝻䝪䝑䝖Ꮫㄅ≉㞟 20] 䠅䛾ᑟධ䛻䜘䜚 ᐇ⌧䛷䛝䜛ྍ⬟ᛶ䛜䛒䜛䛰䜝䛖䠊䛯䛰䛧䠈ಖ㝤ᩱ䛾ᨭᡶ䛔䜢 AI ⮬య䛜䛧䛺䛔ሙྜ䛻 AI 䛜㈺ൾ䛧䛯䛸ゝ䛖䛣䛸䛿㐺ษ䛷䛺䛔䜘䛖 ࿊ཙʁˡښැښࢤࠪښۢনϴڰௌ ښܵથңָָӅܵՌָݜڂՌๅָߊ ϱνϧέτΡϔஎݜڂ࣪KDWDQDND#LLLVNLWDFMS