水平基因转移是细菌进化的关键驱动力,但它也通过引入侵入性的移动遗传元素给细菌带来了严重的风险。为了应对这些威胁,细菌开发了各种防御系统,包括原核生物Argonautes(Pago)和DNA防御模块DDMDE系统。通过生化分析,结构测定和体内质粒清除分析,我们阐明了DDMDE的组装和激活机制,从而消除了小型多拷贝质粒。我们证明了一种类似pago的蛋白DDME充当催化性,DNA引导,靶向DNA靶向防御模块。在存在引导DNA的情况下,DDME靶向质粒并募集二聚体DDMD,其中包含核酸酶和解旋酶结构域。与DNA底物结合后,DDMD从自身抑制的二聚体转变为活性单体,然后沿着并裂解质粒。一起,我们的发现揭示了DDMDE介导的质粒清除的复杂机制,从而为针对质粒入侵的细菌防御系统提供了基本见解。
IL21,TNF; CXCL9,CXCL10,CCL5),转录因子(例如 stat1,-2,-3,-6,irf1,-8),细胞毒性淋巴细胞196IL21,TNF; CXCL9,CXCL10,CCL5),转录因子(例如stat1,-2,-3,-6,irf1,-8),细胞毒性淋巴细胞196
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2020年11月27日。 https://doi.org/10.1101/2020.11.25.398511 doi:Biorxiv Preprint
摘要:近年来,人工智能研究显示出对人类和社会产生积极影响的巨大潜力。尽管人工智能在分类和模式识别相关任务中的表现往往优于人类,但在处理直觉决策、意义消歧、讽刺检测和叙事理解等复杂任务时,它仍然面临挑战,因为这些任务需要高级推理,例如常识推理和因果推理,而这些推理尚未得到令人满意的模拟。为了解决这些缺点,我们提出了七个支柱,我们认为这些支柱代表了人工智能未来的关键标志性特征,即:多学科性、任务分解、平行类比、符号基础、相似性度量、意图意识和可信度。
虽然很多用户没有遇到任何问题,但调查中列出的所有产品和服务都出现了各种问题。此外,正如“沟通”类别中与“提供不正确的信息”相关的问题数量相对较多一样,最常发生的问题类型因产品或服务而异。
这些标题:一种熟食消化成有机c har/ c危害暴风雨管理(精确)论文方向:Claire Gerente(Pron) + Marco Baratieri(Unibz)Co-enstécadrant:Audrey Villot(IMTA)研究团队:团队和绿色IMT大西洋部:DSEE是国际共同所有权的论文吗?是的,如果是的,则设想与沿海的有机体:拟议的主题Unibz具有跨学科的特征?是的,这个博士学位项目旨在支持Biochar/Char的知识,作为媒体,旨在返回地面。这必然要求了解生物量转化过程(生物学,热化学),也需要对城市径流中存在的污染物的吸附剂的多孔材料的表征,并支持植物生长(水保留能力,营养井等)。这些研究的目的是在城市规模上增加产品和流的循环。是否确定了共同融资的来源?是的,如果是,请指定设想哪种共同融资:中产阶级pri +semi-Bourse unibz其他信息:您希望传达的有用信息(如果相关):
1 Centro de Biotecnolologe i y gen gen gen gen rica de Plantas(CBGP),研究所研究Instituto nacional deIncorkingaciónyy y y y y y y agraria y Food(Inia-csic),政治是Cnica de Madrid(UPM),28222333233323332233233 pozuelo de alarar c。 daniel.truchado@upm.es(D.A.T。); mjuamol@ibmcp.upv.es(M.J.-M。); sararincre@gmail.com(s.r。); lucia.zurita@inia.csic.es(L.Z. ); jaime.tome@upm.es(J.T.-A。) 2 Unidad deInnovación Biom是Dica,调查中心能量是TICAS,中世纪,tecnológicas(ciemat),Avenida Complutense 40,28040,西班牙马德里; chorz@ciemat.es 3 Institution ofResjuctionación健康医院12 de Octubre(IMAS12),Avenida decórdobas/n,28041 Madrid,西班牙4RespessivaciónBiom中心是Red de decáncer(Ciberonc),Avenida de Monforte de Monforte de Monforte de Monforte de lemos 3-5-5统治:fponz@inia.csic.es†当前地址:Biologo de Instituto deBiologoí分子Y Celular de Plantas(IBMCP),UPV-CSIC,C/de l'Enginyer Fausto Elio s/n,46022,46022,Val是Ncia,Spain。); jaime.tome@upm.es(J.T.-A。)2 Unidad deInnovación Biom是Dica,调查中心能量是TICAS,中世纪,tecnológicas(ciemat),Avenida Complutense 40,28040,西班牙马德里; chorz@ciemat.es 3 Institution ofResjuctionación健康医院12 de Octubre(IMAS12),Avenida decórdobas/n,28041 Madrid,西班牙4RespessivaciónBiom中心是Red de decáncer(Ciberonc),Avenida de Monforte de Monforte de Monforte de Monforte de lemos 3-5-5统治:fponz@inia.csic.es†当前地址:Biologo de Instituto deBiologoí分子Y Celular de Plantas(IBMCP),UPV-CSIC,C/de l'Enginyer Fausto Elio s/n,46022,46022,Val是Ncia,Spain。
发达国家目前面临的挑战之一是整个电力系统的转型。制定了可再生能源在电力结构中的渗透率的宏伟目标,以降低能源部门的温室气体排放率并实现可持续发展目标。这些目标意味着能源结构中电力份额的提高,以及可再生能源电力份额的提高。这种新的电力结构正在为电网带来变革,并需要灵活性来补偿太阳能和风能的间歇性,而太阳能和风能占可再生电力增加的大部分。电力系统改造的载体之一是就地生产所消耗的电力,这可以减少对额外输电容量的需求。由于光伏成本的下降,自用太阳能项目已经变得有利可图,并在过去几年在欧洲得到了长足发展。电池很可能会在几年后追随光伏趋势,而且价格也越来越便宜。目前有几家公司为住宅部门提供将屋顶太阳能电池板与小型电池相结合的太阳能包。面对电力成本上涨,商业、工业或第三产业的较大消费者也可以从当地生产的廉价能源中受益。本研究重点关注法国,那里的电价是可以承受的,但由于价格上涨和波动,现在提出了电池在当地消费量增加的情况下的盈利问题。我们试图开发一种对供应商和消费者都有利的能源即服务商业模式,以克服电池高投资成本和技术复杂性的障碍。所研究的电池用例是增加自用和负载转移。它们被比较以确定法国第三产业消费者的光伏加储能项目的盈利能力。研究发现,在太阳能自用项目中增加电池会略微减少消费者电费的年度净节省。然而,它增加了 2% 到 8% 的自给率。另一个结论是,电力的零售价格是电池盈利能力中最重要的因素。因此,在当前政策下,电表后储能项目的盈利能力依赖于不稳定和高电价。
摘要 提出了一种用于快速检测IGBT去饱和短路的自适应消隐时间(SABT)电路。在IGBT正常开通或发生负载故障(FUL)时,通过检测IGBT集电极-发射极电压V CE 的变化来实现消隐时间的确定;而当IGBT发生硬开关故障(HSF)时,通过检测栅极电压V GE 来确定消隐时间。利用UMC 0.6μm 700V工艺进行仿真表明,提出的SABT电路能够快速检测FUL和HSF。与传统消隐时间电路相比,SABT电路可以将FUL的故障检测时间从1.3μs缩短到35.5ns,而HSF条件下的故障检测时间从2.329μs缩短到294ns。 关键词:消隐时间,IGBT,去饱和短路保护 分类:功率器件与电路
本文介绍了 MatKG,这是一个涵盖材料科学关键概念的新型图形数据库,涵盖了传统的材料结构-属性-处理范式。MatKG 通过基于转换器的大型语言模型自主生成,并通过统计共现映射生成伪本体模式。目前,MatKG 包含来自 80,000 个实体的超过 200 万个唯一关系三元组。这允许以独特的分辨率和比例对材料知识进行有针对性的分析、查询和可视化。此外,知识图谱嵌入模型用于学习图中节点的嵌入表示,这些表示可用于下游任务,例如链接预测和实体消歧。当用作知识库时,MatKG 允许快速传播和吸收数据,而当作为嵌入模型进行训练时,则可以发现新的关系。