第 4 季度事故高峰 在我们继续关注减少第 4 季度事故高峰的同时,第 102 期包括三篇与该任务相关的文章。首先,由首席准尉 4 Rocha 和评估与标准化局的 Silva 少校提交的一篇文章,介绍了如何正确使用应急响应方法并将其应用于机组;其次,一条简短的情景信息,介绍了机组人员的选择和风险缓解,旨在帮助经验不足的机长在遇到意外风险增加和潜在控制措施时;第三,简要回顾了任务简报流程和任务简报官的重要性。此外,事故回顾还着眼于与高操作节奏、低照度、机组协调和疲劳相关的因素。这些因素可能与第 4 季度的准备培训以及部署到培训中心和 OCONUS 有关。
数字化和数字化转型、大数据和人工智能以及量子计算和区块链技术是当今媒体上最热门和被引用最多的流行语。每个人都听说过它们,但只有少数人理解它们。打个比方,他们似乎乘坐着一列即将出发的高铁。没有人知道从哪里出发,又要去哪里,但每个人都想立即上车,以免错失机会。因此,数字技术一直是政治、工业和社会中激烈猜测和争论的主题,这些猜测和争论是由夸大的希望和恐惧驱动的。乐观主义者强调数字技术的巨大未来前景,并设想新的非常实用的应用的到来,这些应用创造的就业机会甚至比数字化摧毁的还要多。另一方面,悲观主义者散布对数字技术的恐惧,担心超越人类智慧的智能且往往暴力的机器人会造成大规模失业,从而使数百万个工作岗位消失。
摘要:尽管由于政府旨在减少可再生能源普及障碍的政策,欧盟住宅部门的可再生能源采用率已大幅增加,但由于行为障碍和其他障碍,家庭部署可再生能源的全部潜力仍未实现。家庭采用可再生能源技术的最重要因素之一是实施可再生能源的决策;因此,在分析家庭可再生能源接受度时应考虑行为经济学的见解。本文通过分析政策和措施,对家庭可再生能源使用进行了系统的文献综述,这些政策和措施可以通过克服主要障碍来增加家庭可再生能源的使用。利用欧盟统计局的数据,对欧盟家庭可再生能源消费的动态进行了分析,并在立陶宛进行了实证案例研究,以了解家庭接受可再生能源的主要原因。尽管近年来欧盟成员国可再生能源的使用量大幅增加,但研究发现,传统政策无法克服以下最常见的障碍:(1)前期成本高、回报期长;(2)缺乏信息和知识;(3)对环境问题的重视程度低;(4)抵制改变;人类习惯。案例研究表明,大多数立陶宛家庭都希望在家中使用可再生能源技术,但他们遇到了财务困难和基础设施缺乏的问题。政策建议是根据研究结果制定的。
更高形式的对称性是对物质拓扑阶段进行分类的宝贵工具。然而,由于存在拓扑缺陷,相互作用多体系统中出现的高色对称性通常不准确。在本文中,我们开发了一个系统的框架,用于建立具有近似更高形式对称性的有效理论。我们专注于连续的u(1)q形式对称性和研究各种自发和显式对称性破坏的阶段。我们发现了此类阶段之间的双重性,并突出了它们在描述动态高素质拓扑缺陷的存在中的作用。为了研究物质这些阶段的平衡性动力学,我们制定了各自的流体动力学理论,并研究了激发的光谱,表现出具有更高形式的电荷松弛和金石松弛效应。我们表明,由于涡流或缺陷的增殖,我们的框架能够描述各种相变。这包括近晶晶体中的熔融跃迁,从极化气体到磁流失动力学的血浆相变,旋转冰跃迁,超流体向中性液体转变以及超导体中的Meissner效应。
最近已显示在湍流边界层(TBL)中应用动态自由滑道边界,向外移动了近壁横向涡度从墙壁上移开,并将壁皮摩擦降低了40%以上。在此,我们提出了一种由动态自由滑行边界引起的局部重新性化机制,从能量交换和运输的角度来看。提出了与平均运动,湍流运动和无剪切振荡运动相关的能量成分的空间演化。对近壁区域中平均能量交换过程的分析表明,针对规范向下湍流能量级联,湍流的能量被转移到平均运动中。将大量的能量提供给无剪切动作,该动作“置换”了高度湍流和剪切的运动。复发机制与壁附近的剪切运动的外向横向涡度和剪切运动的耗竭有关。作为操纵壁剪应力产生的关键区域的有效方法,动态自由滑移边界比常规的雷米线化过程产生的效果要强得多,可用于减少有效的阻力减少和边界层控制。
接下来,我们假设物体与激励场(初级场)之间的相互作用是纯磁性的。这可以通过磁化铁磁体来实现,也可以通过铜盘中感应出的涡流来实现。在电子标签中,相互作用是通过一个或多个绕组的线圈建立的。请注意,由于磁场的矢量特性,这里的相互作用与方向密切相关,如果初级磁场矢量位于线圈绕组所跨越的平面内,相互作用甚至会消失。初级磁场在要检测的物体所占的区域中被认为是均匀的,这一假设为物体的物理尺寸建立了一个界限。由于磁相互作用,建立了次级磁场,对于距离物体足够远的物体,该磁场具有偶极场的特性。接收器被认为位于此区域,从而提供与感应偶极矩直接相关的输出信号。因此,我们的兴趣集中在两个量上,即激发的初级磁场矢量 h 和感应偶极矩 m ,它们通过所考虑对象的因果关系相互关联。这种关系的各种形式将是本文的主要主题。
使用直接的数值模拟统计平面的湍流过滤量,分析了应变速率张量和热功能的耗散速率的成分的统计行为。HESSIAN的压力贡献以及组合的分子扩散和耗散项被发现在对角应变率成分的传输方程中起主要作用,并且具有小karlovitz数量的峰值动能的热能能量耗散速率。相比之下,领先顺序平衡在应变速率,涡度和分子耗散贡献之间保持较大的卡洛维茨数量,类似于非反应的湍流。与分子耗散贡献的幅度相比,压力和密度梯度之间的相关性以及压力梯度之间的相关性和压力HESSIAN在应变速率和耗散速率上弱化,而Karlovitz数量增加。这些行为已经用涡度,压力梯度和与应变率特征的压力HESSIAN特征向量的对齐方式进行了解释。还发现,在较高的karlovitz数字的增加时,还发现术语术语中的术语大小会增加,这是随着karlovitz数量的增加而增加的,这在详细的扩展分析的帮助下进行了解释。此扩展分析还解释了不同燃烧方案动能耗散率的主要顺序贡献。