认知活力报告®是由神经科学家在阿尔茨海默氏症药物发现基金会(ADDF)上撰写的报告。这些科学报告包括分析药物,开发药物,药物靶标,补充剂,营养学,食品/饮料,非药物干预措施和危险因素。神经科学家评估了可能影响脑部健康的与年龄相关的健康问题(例如心血管疾病,癌症,糖尿病/代谢综合征)的潜在益处(或危害)。此外,这些报告还包括对安全数据的评估,如果可用的临床试验以及临床前模型的评估。尿石a证据摘要尿石蛋白A可能通过促进自噬/线粒体来预防与年龄相关的线粒体功能下降。它表现出良好的安全性,但在迄今为止的短期研究中的好处有限。
量子涡旋是量子超流体中的拓扑缺陷,在宏观尺度上,这些阶段揭示了量子性。量子涡流物质是一个有趣而多学科的研究领域[1-3],它吸引了理论家和实验家。虽然在超级流体制度中深处的精力激励上,但涡流的凝结为理解相邻的非沉积阶段和相关的相变提供了自然框架[4-6]。在旋转整个系统的情况下,在低温下出现了超流体涡流中的丰度[7-10]。正如Abrikosov [11]在外部磁场中与II型超导体紧密相关的上下文中首先发现的,在热力学极限下,常规涡流晶体基态可以出现。它会自发打破(磁)翻译和旋转对称性。在二维极限中,对低能集体激发(称为Tkachenko Waves [12])的研究一直是广泛理论上的主题,如[13 - 24]这样的作品所证明的。此外,在冷原子实验中,在极低的温度下成功地进行了对Tkachenko波的实验观察[25]。值得注意的是,也有人建议Tkachenko模式可以解释脉冲星的动力学[26]。鉴于涡旋的两个横向笛卡尔坐标构成了一对规范的变量[8,27 - 29],因此涡旋代表了固有的模糊实体,其本质上的模糊实体与不成比例的面积与基本玻色子密度成反比。因此,随着晶体内的涡流密度接近玻色子密度的大小,涡旋位置中的量子机械波动与涡流之间的距离相当。粗略估计依赖于Lindemann标准和小规模的精确对角线数值模拟,表明当填充分数大约在1到10之间时,涡流晶体会在零温度下实现量子熔化[8]。在这里,填充分数在以下内容中称为ν,定义为玻色子密度n b和涡流密度,n v之间的比率。这种量子熔化现象的确切性质仍然很糟糕,代表了该领域的长期挑战。分形式弹性双重性[30 - 37]及其前身[38 - 42]提供了一种出色的框架,以研究可能的熔融机制,因为它自然融合了脱节和错位,这些脱位和位错是固体中拓扑缺陷[43]。一个人也可以轻松地掺入va-cancy和间质缺陷[31,34]。在这种形式主义中,量子熔化可以通过一系列的相变实现,其中动态缺陷场扮演了希格斯字段的作用。这种方法在[44]中率先进行的涡流晶体研究中发现了实际应用。除了对各种缺陷之间的静态相互作用的计算之外,这还发现了几个连续的量子希格斯过渡,这些过渡是由缺陷的凝结触发的。在本文中,我们提供了有关二维超氟涡流晶体量子熔化的新见解。值得注意的是,发现涡流晶体的量子熔化可能是由空缺或间质的凝结来提到的,导致最初在经典的有限限制性问题中研究的含量涡旋超固体的出现[45,46]。我们的起点是tkachenko模式的有效理论,在二次近似中,该理论降低了紧凑型标量场的Lifshitz理论[21,24,46,47]。这是快速旋转极限的超氟涡流晶体的良好粗粒描述,其中冷凝水仅占据了最低的Landau水平。在该领域理论中,我们讨论了对称范围的磁性顶点算子的命运,这些磁性顶点算子在特殊条件下与涡流晶体中的空位和间质缺陷相对应。从先前的工作中汲取灵感[5,48],我们确定哪种填充ν这样的磁性顶点操作员在重生群体(RG)sense
量子涡旋是量子超流体中的拓扑缺陷,在宏观尺度上,这些阶段揭示了量子性。量子涡流物质是一个有趣而多学科的研究领域[1-3],它吸引了理论家和实验家。虽然在超级流体制度中深处的精力激励上,但涡流的凝结为理解相邻的非沉积阶段和相关的相变提供了自然框架[4-6]。在旋转整个系统的情况下,在低温下出现了超流体涡流中的丰度[7-10]。正如Abrikosov [11]在外部磁场中与II型超导体紧密相关的上下文中首先发现的,在热力学极限下,常规涡流晶体基态可以出现。它会自发打破(磁)翻译和旋转对称性。在二维极限中,对低能集体激发(称为Tkachenko Waves [12])的研究一直是广泛理论上的主题,如[13 - 24]这样的作品所证明的。此外,在冷原子实验中,在极低的温度下成功地进行了对Tkachenko波的实验观察[25]。值得注意的是,也有人建议Tkachenko模式可以解释脉冲星的动力学[26]。鉴于涡旋的两个横向笛卡尔坐标构成了一对规范的变量[8,27 - 29],因此涡旋代表了固有的模糊实体,其本质上的模糊实体与不成比例的面积与基本玻色子密度成反比。因此,随着晶体内的涡流密度接近玻色子密度的大小,涡旋位置中的量子机械波动与涡流之间的距离相当。粗略估计依赖于Lindemann标准和小规模的精确对角线数值模拟,表明当填充分数大约在1到10之间时,涡流晶体会在零温度下实现量子熔化[8]。在这里,填充分数在以下内容中称为ν,定义为玻色子密度n b和涡流密度,n v之间的比率。这种量子熔化现象的确切性质仍然很糟糕,代表了该领域的长期挑战。分形式弹性双重性[30 - 37]及其前身[38 - 42]提供了一种出色的框架,以研究可能的熔融机制,因为它自然融合了脱节和错位,这些脱位和位错是固体中拓扑缺陷[43]。一个人也可以轻松地掺入va-cancy和间质缺陷[31,34]。在这种形式主义中,量子熔化可以通过一系列的相变实现,其中动态缺陷场扮演了希格斯字段的作用。这种方法在[44]中率先进行的涡流晶体研究中发现了实际应用。除了对各种缺陷之间的静态相互作用的计算之外,这还发现了几个连续的量子希格斯过渡,这些过渡是由缺陷的凝结触发的。在本文中,我们提供了有关二维超氟涡流晶体量子熔化的新见解。值得注意的是,发现涡流晶体的量子熔化可能是由空缺或间质的凝结来提到的,导致最初在经典的有限限制性问题中研究的含量涡旋超固体的出现[45,46]。我们的起点是tkachenko模式的有效理论,在二次近似中,该理论降低了紧凑型标量场的Lifshitz理论[21,24,46,47]。这是快速旋转极限的超氟涡流晶体的良好粗粒描述,其中冷凝水仅占据了最低的Landau水平。在该领域理论中,我们讨论了对称范围的磁性顶点算子的命运,这些磁性顶点算子在特殊条件下与涡流晶体中的空位和间质缺陷相对应。从先前的工作中汲取灵感[5,48],我们确定哪种填充ν这样的磁性顶点操作员在重生群体(RG)sense
摘要近年来对结构化标量涡流束的光学手性和自旋角动量进行了深入研究。这些梁的伪内拓扑电荷ℓ造成其独特特性的原因。是由带有拓扑电荷的标量涡流梁的叠加构建的,圆柱矢量涡流梁是具有空间上不均匀极化分布的高阶庞加尔模式。在这里,我们强调了这些高阶结构梁在偏尾(弱焦点)和非顺式(紧密的聚焦)条件下的光自旋和手性密度的高度可调节和异国情调的空间分布。我们的分析理论可以在任何高阶或杂种庞加莱球体上产生每个点的自旋角动量和光学手性。表明,可调的pancharatnam拓扑电荷ℓp =(ℓa +ℓb) / 2和偏振指数m =(vector涡流梁的vortex beam的ℓb - ℓa) / 2在自定义其旋转和chir式空间分布方面起着决定性的作用。我们还提供了正确的分析方程式,以描述集中的非顺式标量贝塞尔束。
在两个空间维度中,准长范围超导的熔化是通过涡流 - 抗抗反应对的增殖和解开,这是一种被称为Berezinskii-Kosterlitz-kosterlitz-thoubles-thouble(bkt)的现象。尽管已经在大量测量中观察到了这种过渡的特征,但是这些实验通常是复杂的,模棱两可的,无法解决涡流解开过渡的丰富物理。在这里,我们表明局部噪声磁力测定法是一种灵敏的无创探针,可以提供有关比例依赖性涡流动力学的直接信息。尤其是通过解决磁噪声的距离和温度依赖性,可以实验研究涡流气体的重新归一化组流程,并跟踪原位涡旋的发作。特别是,我们预测(i)噪声对温度的非单调依赖性和(ii)局部噪声几乎与BKT转变处的样品 - 探针距离无关。我们还表明,噪声磁力测定法可以区分高斯超导订单参数的流量与拓扑涡流闪光,并可以检测到未结合的涡流的出现。BKT过渡时的弱距离依赖性也可以用来将其与准粒子背景噪声区分开。我们的预测可能在许多非常规超导体的实验范围内。
图2。夏季每日最大HI(O C)(Abscissa)与EHI(O C)(o c)(a坐标)(a,d,g)la,(b,e,h)fl和(c,f,i)cu的散点图。(A-C)基于GCM输出,该输出已通过MBC在历史时期(1985-2014)进行了调整。 (d-f)与(A-C)相同,除了不久的将来(2031-2060)。 (g-i)与(d-f)相同,但遥远的未来(2071-2100)。 未来值基于SSP585方案。 y = x线在青色中显示。 每个点(黑色或红色)代表夏季的一个夏日。 基于双重重量标准偏差(Lanzante,1996)的6个标准偏差的点以红色给出。(A-C)基于GCM输出,该输出已通过MBC在历史时期(1985-2014)进行了调整。(d-f)与(A-C)相同,除了不久的将来(2031-2060)。(g-i)与(d-f)相同,但遥远的未来(2071-2100)。未来值基于SSP585方案。y = x线在青色中显示。每个点(黑色或红色)代表夏季的一个夏日。基于双重重量标准偏差(Lanzante,1996)的6个标准偏差的点以红色给出。
准确预测建筑物的风压对于设计安全有效的结构至关重要。现有的计算方法,例如Reynolds-平均Navier-Stokes(RANS)模拟,通常无法在分离区域准确预测压力。本研究提出了一种新型的深度学习方法,以增强涡轮闭合泄漏范围内的涡流建模的准确性和性能,尤其是改善了虚张声板体空气动力学的预测。经过大型涡流模拟(LES)数据的深度学习模型,用于各种虚张声势的身体几何形状,包括扁平屋顶的建筑物和前进/向后的台阶,用于调整RANS方程式中的涡流粘度。结果表明,合并机器学习预测的涡流粘度可显着改善与LES结果和实验数据的一致性,尤其是在分离气泡和剪切层中。深度学习模型采用了一个神经网络体系结构,具有四个隐藏层,32个神经元和Tanh激活功能,该功能使用ADAM优化器进行培训,学习率为0.001。训练数据由LES模拟组成,用于向前/向后面向宽度比率为0.2至6的步骤。研究表明,机器学习模型在涡流粘度方面达到了平衡,从而延迟了流动的重新安装,从而比传统的湍流闭合(如K-ωSST和K-ε),导致更准确的压力和速度预测。灵敏度分析表明,涡流粘度在控制流,重新分布和压力分布中的关键作用。此外,研究强调了RANS和LES模型之间的涡流粘度值的差异,从而强调了增强湍流建模的需求。本文提出的发现提供了实质性的见解,可以告知针对工程应用程序量身定制的更可靠的计算方法,包括结构性设计的风负荷考虑以及不稳定空气动力学现象的复杂动态。
1个计算机科学学院,中国劳资关系大学,北京100048,中国; tzhenkun@hotmail.com 2北京技术与商学院数学与统计学院,北京100048,中国3号地球表面流程和资源生态学国家主要实验室,北京师范大学,北京北部大学,北京100875,中国; tzhou@bnu.edu.cn 4北京师范大学的地理科学学院环境变化和自然灾害的主要实验室,北京100875,中国5地球与环境科学学院,皇后学院,皇后学院,纽约市,纽约市,纽约市,纽约市,纽约,纽约,11367,美国,美国; chuixiang.yi@qc.cuny.edu 6地球与环境科学系,纽约市纽约市研究生中心,纽约,纽约,纽约10016,美国7 Barry Commoner Health and The Environalser and The Environalser,Queens College,Queens College,纽约市纽约市,纽约,纽约,纽约,纽约,纽约,11367,美国,美国; eric.kutter@qc.cuny.edu 8 Dalian技术大学水与环境研究机构,达利安116024,中国; zhangqinhan@mail.dlut.edu.cn(Q.Z. ); nkrakauer@ccny.cuny.edu(N.Y.K。) 9土木工程系和NOAA-CREST,纽约市纽约市纽约市纽约市10031,美国 *通信:yingyingfu2015@hotmail.com1个计算机科学学院,中国劳资关系大学,北京100048,中国; tzhenkun@hotmail.com 2北京技术与商学院数学与统计学院,北京100048,中国3号地球表面流程和资源生态学国家主要实验室,北京师范大学,北京北部大学,北京100875,中国; tzhou@bnu.edu.cn 4北京师范大学的地理科学学院环境变化和自然灾害的主要实验室,北京100875,中国5地球与环境科学学院,皇后学院,皇后学院,纽约市,纽约市,纽约市,纽约市,纽约,纽约,11367,美国,美国; chuixiang.yi@qc.cuny.edu 6地球与环境科学系,纽约市纽约市研究生中心,纽约,纽约,纽约10016,美国7 Barry Commoner Health and The Environalser and The Environalser,Queens College,Queens College,纽约市纽约市,纽约,纽约,纽约,纽约,纽约,11367,美国,美国; eric.kutter@qc.cuny.edu 8 Dalian技术大学水与环境研究机构,达利安116024,中国; zhangqinhan@mail.dlut.edu.cn(Q.Z.); nkrakauer@ccny.cuny.edu(N.Y.K。)9土木工程系和NOAA-CREST,纽约市纽约市纽约市纽约市10031,美国 *通信:yingyingfu2015@hotmail.com9土木工程系和NOAA-CREST,纽约市纽约市纽约市纽约市10031,美国 *通信:yingyingfu2015@hotmail.com
强烈的涡流梁有望赋予吸引人的现象和在高功率激光 - 物质相互作用中的应用。当前,多个涡流束的叠加显示了量身定制和增强涡流场的独特能力。但是,产生此类光束的传统策略遭受了大量或/和低激光诱导的损坏阈值的影响,从而阻碍了实际的广泛应用。在此,提出了一个高阈值跨表面,并通过实验证明了多个共线涡流梁的产生和叠加。该方案通过在方位角方向采用切片相模式的概念来利用元图设计中仅相位调制的高转换效率。实验可以实现具有增强强度和稳定空间传播的光点。此外,飞秒激光诱导的嵌入二氧化硅玻璃中的双重双向纳米结构被用作具有高光学效率的构件。透射率大于99.4%,并且在实验中验证了激光诱导的损伤阈值高达68.0 J/cm 2(在1064 nm,6 ns)的损伤阈值。考虑到这些出色的性能,所证明的高阈值超脸在许多高功率激光场中具有有希望的应用。
由于在较高的质量范围内缺乏任何检测信号,因此在直接检测实验的下一个前沿中出现了轻暗物质质量状态。在本文中,我们提出了一种新的检测材料,即一块石墨烯的双层堆栈来检测Sub-Mev暗物质。其电压可调的低能亚ev电子带隙使其成为轻质暗物质搜索实验的检测器材料的绝佳选择。我们使用随机相位近似计算其介电函数,并估计对亚M-EV暗物质电子散射和SUB-EV暗物质吸收的预测灵敏度。我们表明,双层石墨烯暗物质检测器可以像其他候选目标材料一样具有竞争力敏感性,例如超导体,但在这种大规模状态下具有可调阈值。双层石墨烯中的暗物质散射速率也以地球旋转的每日调制为特征,这可能有助于我们在将来的实验中减轻背景。我们还概述了检测器设计概念,并提供了可以在将来设置实验的噪声估计值。