假设任何超电流OW都对应于电子的效率超级uid ow速度 - →v,其中⃗j s = - en s -en s - →v。假设相应的动能为1 2 mV 2 N S /单位体积。因此,使用“涡流筛选电流”问题部分(C)和(d)的结果,表明涡旋线的每单位长度E的总能量大约为E =φ24πµ0λ2λ2ln月2lnλξ0
在结构化光的领域,光学涡旋及其矢量扩展(矢量涡流束)的研究因其独特的相位和极化特性而引起了很大的兴趣,这使它们对许多潜在应用有吸引力。结合了涡流束和各向异性材料的优势,可以在非线性光学,量子和拓扑光子学中实现电磁场剪裁和操纵的独特可能性。这些应用程序需要一个全面的建模框架,该框架构成了各向异性材料和矢量涡流梁的属性。在本文中,我们描述了一个半分析模型,该模型将矢量衍射理论扩展到通过单轴平板传播的聚焦涡流梁的情况,考虑到标量和矢量涡流的情况下,在laguerre-gaussian模式基础的共同框架中。该模型旨在提供对方法的全面描述,从而实现复杂的光束传输,从单轴各向异性材料中进行特定应用中的单轴各向异性材料的反射和传播。作为其多功能性的演示,我们采用了开发的方法来描述具有各种分散特征的单轴材料中高阶涡流束的传播,探索椭圆形,双曲线和epsilon-near-near-Zero机制。我们展示了培养基各向异性的变化如何因其相互作用的矢量性质而改变束结构,这是由于介质的不同介电性用于横向和纵向场的组件。如果可以通过有效的培养基参数描述,则该方法的适用性可以扩展到人工结构化的介质。开发的形式主义将有助于对复杂梁与单轴材料的相互作用进行建模,从而为多种情况提供了共同的框架,这也可以扩展到电磁波之外。
(但也是Divk∈W -1,∞))。Bresch,Jabin和W.('20)(一般单数内核)。库仑(喜欢)流或保守的流动,确定性案例:duerinckx('16),sfaty('20),rosenzweig('20 -'21)。Guillin,Le Bris&Monmarché('21)。Guillin,Le Bris&Monmarché('21)。
Guillaume Malpuech,H Min Xiao,J,K Yanpeng Zhang,A和Zhaoyang Zhang A, * A XI XI'jiotong University,教育部的物理电子和设备的主要实验室对于复杂系统的理论物理学,大韩民国大韩民国科学技术大学(UST),基础科学计划,大韩民国大道基础科学计划,D莫斯科物理与技术研究所,俄罗斯Dolgoproudnyi,俄罗斯E沃尔夫汉普顿大学,沃尔夫汉普顿大学,沃尔弗尔·汉弗·沃尔弗尔·霍姆斯特·沃尔弗尔·弗里格·沃尔弗尔·伊斯特·弗里格·沃尔夫·伊斯特·沃尔夫汉俄罗斯的彼得斯堡,俄罗斯H.UniversitéClermontAuvergne,Pascal Institut Pascal,Photon-N2,CNRS,CNRS,Clermont INP,France I Institut i Institut Universitaire de France,Paris,Paris,France j法国J大学中国南京
无处不在的中尺度涡流对热量的海洋运输在调节气候变异性和重新分布全球变暖下被海洋吸收的多余热量重新分布中起着至关重要的作用。涡流长期以来一直简化为轴心涡旋及其对热传输的影响尚不清楚。在这里,我们结合了卫星和漂流者的数据,并表明海洋中尺度的涡流是不对称的和方向依赖的,并且受其自动维持性质及其动态环境的控制。涡流诱导的He的方向和振幅都受到涡流的不对称和方向依赖性的显着影响。当将涡流场分解为不对称和对称成分时,涡流动能在这两个组件之间表现出几乎相等的分配。总涡流引起的子午热孔类似地使对称成分引起的热孔增加了一倍,从而突出了涡流不对称的关键贡献对涡流诱导的海洋热传输的幅度。
认知活力报告®是由神经科学家在阿尔茨海默氏症药物发现基金会(ADDF)上撰写的报告。这些科学报告包括分析药物,开发药物,药物靶标,补充剂,营养学,食品/饮料,非药物干预措施和危险因素。神经科学家评估了可能影响脑部健康的与年龄相关的健康问题(例如心血管疾病,癌症,糖尿病/代谢综合征)的潜在益处(或危害)。此外,这些报告还包括对安全数据的评估,如果可用的临床试验以及临床前模型的评估。CK2抑制剂证据摘要CK2影响了多种细胞信号通路。CK2抑制剂最适合于癌症,并显示出良好的安全性。其他适应症可能需要更多的选择性抑制剂。
摘要 碳复合材料因其特殊性能而应用于各个行业,尤其是航空航天工业。广泛使用的碳纤维增强聚合物 (CFRP) 甚至已应用于飞机主要结构。开发能够轻松检测和识别碳纤维材料退化的先进诊断技术仍然是各种无损检测方法面临的挑战。本文介绍了应用涡流 (EC) 检测碳复合材料结构的可能性。开发并测试了两种类型的涡流探头,并获得了优异的结果。新的传统涡流探头能够可靠且轻松地检测表面和地下不连续性,例如分层和厚度变化。针对不同类型的碳复合材料(基质和增强材料类型、铺层)描述了探头设置参数。精确的设置对于成功的涡流检测必不可少。经确定,对于样品,可靠检测的最小表面缺陷尺寸为 Ø1.5 mm,并且根据碳复合材料的类型,涡流能够穿透厚度高达约 4 mm。此外,本文还介绍了涡流检测与超声相控阵法 (PAUT) 的比较。复合材料飞机结构很容易受到通常使用 PAUT 检测的冲击损伤。因此,冲击数据的灵敏度和分辨率分析
微切口经常用于空间机制,以提供遥测或提供正面指示所需位置或功能的正面指示,例如开放,近距离,锁上,闩锁,闩锁,锁定,旅行末端,参考位置,参考位置以及不同的机制应用。依赖电力技术的当前开关不是很可靠,并且对安装方向,对热梯度敏感,并且对操作周期数量有限,这对于长寿命应用,发射振动和冲击负荷是一个问题。依赖接触以及继电器芦苇的微切口仍然提供了其他电阻扭矩,这些扭矩必须由机理执行器克服,对汽车缘有负面影响。在本文中,Cedrat Technologies介绍了基于涡流传感器(ECS)技术的非接触式微型开关设备的设计和测试结果,并具有嵌入式空间分级的调理电子设备。在ESA R&D太空计划下实现了这一开发,以开发微型开关设备不影响机制的可靠性,不增加额外的质量或任何电阻扭矩,并且主要目的是为具有大量量的空间应用实现很高的成本效益,例如新的空间星座。已经实现了两种传感配置的设计,一种用于轴向运动,第二个用于切向运动。提出了一批工程资格模型的测试结果,用于感应精度,空间环境温度条件,发射振动和冲击测试,航天器电磁兼容性(EMC)测试以及辐射环境测试高达300Krad。
量子密钥分布(QKD)是通信技术的新方向。QKD建立了两个当事方(通常称为Alice和Bob)之间的安全连接,其中量子力学定律提供了有目的的通道的可靠性,其中最重要的是无关定理[1]。从长远来看,QKD基于计算数学函数的复杂性,QKD比常见的密码系统提供了更安全的连接。第一个提出的方案是BB84 [2],其中秘密键是通过使用两个正交光子极化碱基来生成的。从那时起,研究了许多方案和实验方案以改善QKD系统的参数并扩大其应用的可能性[3]。尤其是,自由空间QKD由于其灵活性和移动性而积极开发,可用于移动设备[4],卫星通信[5]和物联网(IoT)[6]。与光纤纤维相比,自由空间QKD尚未在商业系统中广泛使用。这些系统的主要局限性是高斯光束偏离由大气湍流和天气条件引起的原始传播方向的偏差。为解决此问题,目前使用了具有较大入口或特殊校正系统的伸缩系统,这增加了QKD系统的复杂性,重量和成本。作为梁偏差补偿的另一种方法,可以使用光涡旋,根据许多研究[7,8],在湍流气氛中更稳定。这些问题将在本文中探讨。光涡流或具有轨道角动量(OAM)的光辐射在其中心具有空间奇异性,相位保持不确定,并且沿着梁的内边缘从0到2π不等[9]。这些过渡的数量对应于涡旋的拓扑电荷。目前,已经在QKD系统中研究了涡流束,特别是作为编码信息的基础[10]和相对于轨道动量的通道[11]。但是,在自由空间QKD中具有湍流气氛的高斯和涡流梁的传播及其对此类系统参数的影响之间没有比较。此外,没有对相位调节保存进行的实验研究,并对涡流束进行了额外的调节和解调,这对于将大气通道与光学纤维有效整合是必不可少的。
摘要:在计算中包括海面电流,可以通过负风能输入来潮湿的中尺度涡流,并且具有涡流寿命的潜在影响。在这里,我们研究了斜力斜体反气旋涡流,但要采用理想化的高分辨率高分辨率数值模型,遭受绝对(无海面电流)和相对(包括海面电流)的风应力。这项研究的结果表明,相对风应力耗散表面平均动能(MKE),并且还通过Ekman泵送整个水柱产生额外的垂直运动。风应力卷曲 - 诱导的Ekman泵送产生额外的巴罗诊所转化(平均平均动能电位),发现通过增加深MKE来抵消表面MKE的阻尼。对相对风应力的缩放分析 - 诱导的斜压转化和相对风应力阻尼确定这些数值的结果,表明额外的能量转换抵消了相对风应力阻尼。更重要的是,发现风应力卷曲 - 诱导的Ekman泵送可以改变表面电势涡度梯度,从而导致涡流的早期不稳定。因此,涡流不稳定性和最终的涡流衰变的开始是在模拟中以相对风应力的较短时间尺度进行的。