本报告简要讨论了美国国家可再生能源实验室 (NREL) 对 Verdant Power 第五代 (Gen5) 水下潮汐能转换涡轮机主轴密封件进行的加速寿命测试的观察结果和结果,该涡轮机于 2020-2021 年在罗斯福岛潮汐能项目中成功运行。为了评估该部件的 5 年服务间隔 (SI),主轴密封件以每分钟 160 转的转速几乎连续运行了 137 天,同时试验台记录了水压、隔离液压力、温度和循环次数,约占 SI 的 40%。还进行了一项单独的测试来测量橡胶驱动环的老化行为。对于 SI 评估,水压储液器保持恒定为 199.9 kPa (29 psi)。隔离液压力在整个测试期间保持相对恒定,但降至 69.6 kPa (10.1 psi)。整个测试过程中未观察到隔离液泄漏。在测试机因预定的建筑物维护程序而断电后,密封件突然出现故障。重新启动后,主轴密封件完全失去了防止水进入的能力。确切原因尚不清楚,但据信是密封件组装问题,或断电期间或之后密封件组件的对齐方式发生变化。拆卸密封件后,其中一个石墨密封环出现严重磨损。Verdant Power、Dovetail Solutions LLC 和 Garlock Sealing Technologies 审查了密封件磨损情况,以对结果进行一致评估。NREL 将密封面送回 Garlock,对密封面的审查表明测试台存在错位,包括整体错位(整个轴移动)和前后错位(水侧运动比空气侧运动更多)。Garlock 进一步指出,密封件通常可以吸收轻微的错位;因此,注意到的磨损导致测试台中断。因此,Gen5 密封件在断电前仍能运行表明其长期性能良好。根据这些结果,建议通过 NREL 的海洋能源研究测试专业知识和访问 (TEAMER) 计划进行后续测试,以纠正协议和组装问题,以进一步评估该组件的 SI。
随着燃烧涡轮机的热效率的增加,涡轮发电机产生的电力总燃烧的燃料较小,并且CO 2和其他空气排放量相应减少。效率据报道是转化为电力的燃料中能量的百分比。1热率是表达效率的另一种常见方法。热率表示为英国热单元(BTU)或千焦耳(KJ)的量,以产生千瓦时的电力(kWh)。较低的热率与更有效的发电率有关。效率提高可以以不同的格式表示;它们可能被报告为总体效率的绝对变化(例如,从40%变为42%,代表2%的绝对增加)。它们也可以作为效率的相对变化表示(例如,从40%变为42%会导致燃料使用降低5%)。效率的相对变化是最一致的方法,因为它对应于热率相同的变化。对于大多数燃烧涡轮的EGU,随着热率的降低,燃料提取相关的环境影响以及对冷却水生态系统的相关热影响的相应减少。2
我们提出了一种加固学习策略,以通过主动更改转子速度,转子偏航角和叶片螺距角来控制风力涡轮机能量。具有优先体验重放剂的双重Q学习与刀片元件动量模型相结合,并经过训练以允许控制风。训练代理商可以决定最佳的控制(速度,偏航,音高),以实现简单的稳定风,随后通过真正的动态湍流挑战,表现出良好的性能。将双重Q学习与经典价值的迭代增强学习控制进行了比较,并且两种策略在所有环境中都超过了经典的PID控制,增强型学习方法非常适合不断变化的环境,包括湍流/阵阵风,显示出极大的适应性。最后,我们将所有控制策略与实际风进行比较,并计算年度能源生产。在这种情况下,双重Q学习算法也胜过经典方法。
分别安装在旋转窑的上游和下游。当前的水泥植物使用多阶段的旋风预热器在到达窑炉之前将原材料混合物预热。随着预热阶段的数量增加,植物的废热电位也会减少。典型的预热排气温度在280oC至450oC之间,典型的AQC排气温度从250oC到330oC不等。发电的范围从25kWh/t到WHR应用的熟料的45kWh/t。我们的蒸汽轮机在全球水泥厂成功运作,从而产生了废热的动力;无论是棕地还是格林菲尔德水泥植物建筑,Triveni都有专业知识,可以提出蒸汽轮机解决方案来推动客户成功。这是印度安装22 MW蒸汽轮机的案例。自2020年8月以来,蒸汽轮机发电机一直在可靠地运行,并允许主要水泥播放器以全容量运行(每年700万吨),从而降低了对电网的依赖,并提高了工厂的收益和效率。
摘要 - 随着CMOS技术的发展和电路的复杂性的增长,对模拟/混合信号设计自动化工具的需求正在迅速增加。尽管已经开发了一些工具来应对这一挑战,但是较少考虑了过程,电压和温度(PVT)变化引起的性能降低。本文介绍了PVTsizing,这是PVT-强大模拟电路合成的优化框架。pvtsizing采用信任区域贝叶斯优化(Turbo),用于高质量的初始数据集和参考点。多任务加固学习(RL)用于PVT操作。涡轮和RL均对批量友好,可以并行对设计解决方案进行采样。同时,提出了提高批评的修剪和缩放目标指标,以提高样本效率并降低运行时。此外,该框架自然支持随机不匹配而尺寸。在4个现实世界电路上,带有TSMC 28/180NM工艺,PvtSizing实现1。9× - 8。8×样品效率和1。6× - 9。8×时间效率的提高。索引术语 - Bayesian优化,增强学习,PVT变化,模拟电路合成
飞机或旋翼机燃气涡轮发动机某些关键子系统的电气化为下一代航空发动机提供了许多宝贵的优势,如减轻重量、降低能耗、提高子系统和整个推进系统的效率、加快响应速度、更快更容易维修、比液压和气动系统可靠性更高、减少油耗、提高有效载荷能力、降低总生命周期成本、提高可维护性、发动机维护和操作更清洁、更好地分配机载资源、为维护和客户提供实时数据、提高健康监测能力等。发动机子系统的电气化还可以开发新的创新型飞机和发动机配置,例如,去除笨重而复杂的(发动机和/或飞机)附件驱动变速箱(ADG)或为 IGV、推力反向器门或任何其他可变几何部件引入和使用更多的 EMA(机电执行器)。在发动机和子系统(如润滑系统)中集成更多更智能的传感器是另一个明显的优势(例如油渣监测传感器或油箱液位传感器)。还将讨论更多电气子系统的集成,并了解与电源和热管理相关的固有风险(参见 AVT-RTG-333“将推进、电源和热子系统模型集成到飞行器概念设计中”)。因此,建议对涡扇和涡轴子系统电气化的当前趋势进行分析,并组织关于此主题的 RSM,目的是将 AVT 小组定位在此技术发展的前沿。背景
在这项研究中,除了世界各地的风力涡轮机技术的最新进展和趋势外,土耳其安装的商业风力涡轮机技术的进步也得到了彻底检查。在这方面,已经在2011年至2019年至2019年之间获得了几个用于安装的风力涡轮机,包括涡轮数,安装功率(MW),平均额定能力(MW),平均转子直径(M),平均特定功率容量(M 2)和平均轮毂高度(M 2)和平均轮毂高度(M)。根据获得的结果,土耳其年度安装的风力涡轮机的平均额定能力从2011年的1.86兆瓦升至2019年的3.52兆瓦。然而,年度安装的风曲线的平均特定功率从423.7 W/m 2下降到314.1 W/m 2。结果表明,特定功率的大小和减少的增长导致了更高的功率输出的趋势,而风力涡轮机能力因子和发电能力在土耳其的上升。随着时间的推移,带直径较大的风力涡轮机开始显示在陆地上更容易观察到。为此,在选择位点选择过程中调节涡轮可见性的建议解决方案是潜在的可见性模型(PVM),该模型应用作辅助变量。
摘要:本文介绍了叶片上传感器系统的设计,实现和验证,用于用于低容量风力涡轮机的远程振动测量。自主传感器系统被部署在三个风力涡轮机上,其中一个是在智利南部较远的天气条件下运行的。系统记录了叶片在自由式和边缘方向上的加速度响应,可用于提取叶片动态特征的数据,可用于损伤诊断和预后。所提出的传感器系统显示出可靠的数据采集和从远程位置的风力涡轮机的传输,证明了创建一个完全自主的系统的能力,该系统能够记录数据,以监视和评估无人干预的长时间的风力涡轮机叶片的健康状况。本研究中介绍的传感器系统收集的数据可以作为开发基于振动的实时结构健康监测策略的基础。
今年,我们庆祝美国能源部向加州区域氢能中心可再生清洁氢能系统联盟 (ARCHES) 颁发 12 亿美元。该奖项还获得了来自加州、行业合作伙伴、港口和过境费以及私人融资的超过 117 亿美元的拨款,用于投资近 130 亿美元开始在加州各地大规模开发氢能基础设施。我们感谢加州大学各个校区的教职员工、学生和工作人员、加州州长办公室、加州大学校长办公室、劳伦斯伯克利国家实验室以及参与这项工作的 430 个组织中的许多其他组织做出的前所未有的贡献。ARCHES 是美国能源部支持的七个区域氢能中心中最大的一个,通过该中心,加上国会通过并由拜登政府签署成为法律的生产税收抵免和投资税收抵免,氢能及其特性将开始大规模展示,以如此低的价格生产和提供清洁和可再生的氢能,这将终结化石燃料。
■ 如果没有顾虑,参与过程将以德国联邦国防军的积极声明结束。 ■ 另外,德国联邦国防军也愿意进行专业讨论,以讨论实施观点(例如,通过调整位置或降低建筑高度)。
