海上风力涡轮机 (OWT) 的运营和维护在海上风电场的发展中起着重要作用。与运营相比,考虑到海上运营的实际限制和相对较高的成本,维护是能源平准化成本的关键要素。维护对海上风电场生命周期的影响非常复杂且不确定。维护策略的选择会影响海上风电场的整体效率、利润率、安全性和可持续性。对于海上风电项目,在选择维护策略后,将考虑进度规划,这是一个优化问题。现场维护将涉及复杂的海上作业,其效率和安全性取决于实际因素。此外,海上维护对环境的负面影响值得关注。为了解决这些问题,本文回顾了 OWT 维护的最新研究,涵盖策略选择、进度优化、现场运营、维修、评估标准、回收和环境问题。总结和比较了许多方法。描述了 OWT 运营和维护研究的局限性和工业发展的不足。最后,确定了未来维护策略研究的有希望的领域。
为了满足对廉价绿色氢气的需求,已经开发出专门用于氢气生产的风力涡轮机设计优化框架。该框架通过最小化氢气平准成本 (LCOH) 目标来优化风力涡轮机。初步案例研究结果显示,与使用我们框架的 LCOE 优化涡轮机相比,LCOH 降低了 1.53%。从基线参考涡轮机到 LCOH 优化涡轮机,LCOH 降低了 12.7%。从基线参考涡轮机到 LCOE 优化涡轮机,LCOE 降低了 12.35%。与基线和 LCOE 优化涡轮机相比,LCOH 优化涡轮机具有更大的转子,其中增加的涡轮机成本由增加的氢气产量抵消。本案例研究重点关注单个风力涡轮机-电解器系统,表明使用新的优化目标可以显着节省成本。通过工厂级优化以及包括太阳能电池板和电池存储等其他技术,可以进一步节省成本。
本作品是作为美国政府机构赞助工作的记录而编写的。美国政府及其任何机构、其任何雇员、其任何承包商、分包商或其雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用的结果做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构、其承包商或分包商的观点和意见。
摘要该系统旨在促进可再生能源的使用,并减少对不可再生能源(例如化石燃料)的依赖。该系统包括多个组件,包括光伏(PV)面板,风力涡轮机,电池存储,负载管理和主网格。这些组件的整合为家庭和企业提供了可靠且稳定的电力来源,尤其是在容易停电的地区。电池存储系统有助于平衡可再生能源的间歇性质,从而提供了更一致的电力。此外,该系统可以减少发电过程的碳足迹,并有助于减轻气候变化的影响。总的来说,实施PV式储存涡轮机载荷 - 货网系统有可能改变我们的生产方式和消耗电力,从而为子孙后代创造了更可持续和弹性的能源系统。
涡轮机在风洞中运行,本文描述了整体实验方法、面临的挑战、经验教训和未来工作的机会。这两项活动分别于 2018 年秋季和 2019 年秋季开展,使用迎面而来的风的预览扰动测量,分别测试了无约束和约束最佳叶片螺距控制器。具体而言,第一项研究考虑了线性二次调节器的扩展以包括前馈作用,而第二项研究部署了模型预测控制以将执行器约束纳入最优控制问题。这些活动的结果已经在控制系统技术会议和期刊论文中发表;但是,这些工作中没有包括如何实现控制器的细节。我们旨在通过这项针对风能社区的贡献来填补这一空白。我们描述了实验设置的几个方面,特别是提供了用于控制器的软件和硬件的细节;分享了对程序中几个困难方面的见解以及我们如何克服这些挑战;并总结了基于模拟的研究和物理测试之间的主要区别。通过这样做,我们希望分享我们学到的东西
本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
通过在加拿大进行的实验,现在有机会避免这种停机时间。实验表明,使用直升机和热水(不含化学品)可以为涡轮叶片除冰。热水喷洒在叶片上的方式与为飞机除冰以去除积冰的方式相同 - 这是一种简单而有效的方法,Alpine Helicopter AB 看到了进一步开发以加快这一过程的机会。Alpine 主动开发了风力涡轮机叶片除冰溶液设备的原型,与加拿大方法相比,其效果明显更快。该原型于 2013 年秋季向 Skellefteå Kraft AB 的操作员进行了演示。虽然他们对这项技术印象深刻,但该方法需要进一步开发。
本文利用能源资源混合优化模型 (HOMER) 软件,对沙特阿拉伯延布地区的十种不同风力涡轮机进行了模型和经济性分析。这项研究可帮助决策者选择最合适的风力涡轮机来满足沙特“2030 愿景”中 58.7GW 的可再生能源目标。分析基于涡轮机的初始资本成本、运营成本、净现值成本 (NPC) 和平准化能源成本 (LCOE)。此外,还根据风力涡轮机的发电量、过剩能量和所需存储设备的大小对其进行了比较。结果表明,对于延布村庄的典型负载曲线,Enercon E-126 EP4 风力涡轮机的平准化能源成本 (0.0885 美元/千瓦时) 和 NPC (23.8 美元) 最低,而 WES 30 的平准化能源成本 (0.142 美元/千瓦时) 和 NPC (38.3 美元) 最高。
能够对系统的结构性能和可靠性进行评估。与叶片振动监测相关的主要技术挑战之一源于复杂的动力学和内在的不确定性,这使得基于模拟的方法难以实现。因此,振动特性的数值研究应基于可靠且有效的气动弹性模型,该模型应能够将结构和气动部分耦合在一起。前者通常用等效梁单元建模,而 WT 的典型气动建模方法包括叶片单元动量 (BEM) 理论、执行器线模型、升力板和涡流模型以及计算流体动力学 (CFD) 方法。执行器线 6 以及升力板和涡流模型 7 旨在提供改进的尾流建模;然而,它们都各有弱点,前者由于需要求解 Navier-Stokes 方程而计算量大,而后者由于方法的内在奇异性而存在发散问题。8 另一方面,CFD 分析受到了广泛关注,尽管目前显示它对于大攻角不可靠。9 此外,它们的适用性仍然受到计算需求增加的限制。10 因此,BEM 理论已成为预测 WT 叶片上气动载荷的标准工业实践,这归功于它能够使用翼型气动数据提供准确且计算效率高的结果。除了上述成熟的气动模型外,还提出了各种替代方法。Zhang 和 Huang 10 对此进行了广泛的综述研究,重点关注不稳定性问题、复杂的流入效应、结构非线性以及 CFD 和气动水弹性分析。仅就气动部分而言,Lee 等人提出了使用改进的条带理论进行气动弹性分析。11 同时还提出了一种基于谐波平衡法的气动弹性方案,12 显著缩短了计算时间,并且比标准 BEM 方法更为稳健。通过使用三维模型进行数值研究,进一步研究了冰积对叶片气动行为的影响。 13最后,Peeters 等人。39 最后,一类更复杂的方法涉及基于 CFD 的分析,9,14 事实证明,这些方法与标准工业工具(例如疲劳、空气动力学、结构和湍流 (FAST))具有合理的一致性。关于结构模型,还提出了超出标准方法(包括等效梁的构造)15 的方法,包括薄壁梁模型 16 ,它可以适应大型叶片中遇到的大多数特征,例如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损坏的模型,17 等等。18 对叶片的壳和固体有限元 (FE) 模型之间的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在大量可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型柔性叶片则并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由于几何非线性而产生的耦合效应变得越来越重要。24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商业模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决 WT 叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 本质上提供了变形梁几何的精确表示,这对于较大的 WT 来说越来越重要。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。该方法被证明具有显著的计算效率,从而能够与结构监测数据相结合以供实时应用。31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出一种用于 WT 叶片的非线性气动弹性模型。一类替代方法可以减轻计算成本的增加,即使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。