注意:本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府、其任何机构、其任何雇员、其任何承包商、分包商或其雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府、其任何机构或其任何承包商或分包商对其的认可、推荐或支持。本文表达的观点和意见不一定表明或反映美国政府、其任何机构或其任何承包商的观点和意见。
风力涡轮机 (WT) 利用风能发电。因此,对风力涡轮机的控制和经济高效的运行进行了研究。控制系统具有使用寿命长、能量输出最大和安全性高等特点。在控制方法和控制策略方面,讨论了限制和优化能耗的各种方法。风力发电的整合可能会损害瞬态系统的稳定性。异步感应发电机无法处理风能应用中产生的无功功率。WT 通常设计为可承受恶劣天气,但不能承受高速度或高扭矩。强大的气动扭矩或转速能够破坏 WT 叶片。为了防止这种情况发生,WT 始终具有一个切断速度,超过此速度时,涡轮机将通过制动器停止运转。当过大的风速危及涡轮机的安全时,WT 会采用一系列控制技术。因此,所有 WT 均采用功率控制方法构造。这可以调节俯仰和失速。WT 可以应用被动或主动失速控制。因此,本研究分析了相关技术、风力涡轮机的维护、成本、多种类型的风力涡轮机控制器以及风能行业特有的负面影响和障碍。
摘要:本论文介绍了风力涡轮机叶片材料(E 玻璃和聚酯树脂)子结构测试的开发,以及从该测试程序中获得的初步实验结果。密歇根州立大学正在进行的研究已经建立了转子叶片材料疲劳响应的基线数据,使用试样几何形状对 10^8 个应力循环进行测试。子结构测试的必要性基于公认的工程程序,即逐步扩大规模以进行全尺寸测试。对于复合材料风力涡轮机叶片,这种方法的必要性源于缺乏针对风力涡轮机预期寿命的动态结构设计经验,在 30 年的使用寿命中接近 10^9 个疲劳循环,并且缺乏在这种循环水平上使用 E 玻璃复合材料的经验。
德国劳氏船级社指南允许以两种完全不同的方式计算载荷谱。在所谓的“简化载荷谱”的情况下,载荷分量的最大波动幅度为额定风况下该分量纯气动载荷平均值的±75%,以及与质量相关的载荷的叠加。GL 指南中允许的第二种方法是根据时间域中的模拟结果计算载荷谱。对于多个平均风速,计算载荷分量的时间相关特性时要考虑风的自然空间湍流。使用雨流法将它们转换为载荷谱。在参数研究中,根据这两种方法计算载荷谱并进行比较。计算适用于额定功率为 100 kW 至 2000 kW、具有两个和三个叶片的涡轮机,以及失速控制和俯仰控制涡轮机。通过 1 P 疲劳等效载荷谱将计算出的载荷谱与每个载荷谱进行比较。介绍了各个参数的影响,以及简化载荷谱的有效性。
图 70 货船和油轮在加州中部沿海过境 (MarineCadastre.gov) ........................................................................................................................................................................... 141 图 71 货船和油轮在加州莫罗湾沿海过境 (MarineCadastre.gov) ........................................................................................................................................................... 142 图 72 货船和油轮在加州北部沿海过境 (MarineCadastre.gov) ........................................................................................................................................................... 143 图 73 货船和油轮在俄勒冈州和华盛顿州沿海过境 (MarineCadastre.gov) ........................................................................................................................................... 143 图 74 所有船只在夏威夷过境 (MarineCadastre.gov) ........................................................................................................... 144 图 75 缅因州海上风电选址图 (缅因州,2021 年) ........................................................................................................... 145 图 76 货船、油轮和拖船过境缅因湾 (MarineCadastre.gov 145 图 77 风力发电曲线 (Musial, 2020) ........................................................................................... 158 图 78 加州 OCS 的海上风速和地点 (Musial et al., 2016) ........................... 159 图 79 风速和 Si
这是一份未经编辑的手稿的 PDF 文件,已被接受出版。作为对客户的服务,我们提供手稿的早期版本。在以最终形式发布之前,手稿将经过文字编辑、排版和校样审查。请注意,在制作过程中可能会发现可能影响内容的错误,并且适用于期刊的所有法律免责声明均适用。
皱纹鉴定。这些技术中的大多数对典型的皱纹“副作用”很敏感。虽然这些副作用可以通过传统的 NDT 技术检测到,但它们并不是导致强度降低的驱动参数。皱纹可能伴随着表面凸起、不同的层间距、树脂池和局部刚度的变化而出现。这些特征可以分别通过目视检查、由于声速变化而产生的超声波、由于树脂池反射而产生的超声波和导波来检测。然而,就强度而言,重要的参数是纤维的曲率。很少有方法对此参数敏感。一个例外是布里斯托尔大学史密斯教授团队目前开发的一种技术。该技术涉及将超声波频率“调整”到层压板的周期性结构中,并可以从接收信号的相位信息中恢复纤维的曲率。虽然该技术在航空航天领域已显示出良好的效果,但 Vestas 正在与布里斯托尔大学合作,使该方法适应风级 GFRP 的特性。
1 挪威科技大学海洋技术系,NO-7491,特隆赫姆,挪威 2 国家可再生能源实验室,戈尔登,CO 80401,美国 3 代尔夫特工业大学,Mekelweg 2, 2628 CD 代尔夫特,荷兰 4 汉诺威莱布尼茨大学,驱动系统和电力电子研究所,Postfach 6009,30060 汉诺威,德国 5 亚琛工业大学风力驱动中心 CWD,Campus-Boulevard 61,52074 亚琛,德国 6 亚琛工业大学机械元件和系统工程研究所 MSE,Schinkelstrasse 10,52062 亚琛,德国 7 鲁汶天主教大学,机械工程,LMSD 分部,哈弗莱,比利时 8 Flanders Make,机械和机电一体化系统动力学核心实验室,哈弗莱,比利时 9 University of Strathclyde, 16 Richmond St, Glasgow G1 1XQ, United Kingdom 10 Institute for Energy Systems, School of Engineering, Edinburgh, United Kingdom 11 DTU Wind Energy, Frederiksborgvej 399, 4000 Roskilde, 丹麦 12 Equinor ASA, Sandslivegen 90, 5254 Sandsli, 挪威 13 机械工程系,布鲁塞尔自由大学 / OWI-Lab, B-1050, 布鲁塞尔, 比利时
未来的风力涡轮机设计必须包括风洞测试,以产生用于设计的高质量实验数据。这些实验数据(包括翼型和整体系统性能)可用于验证和改进风力涡轮机叶片和系统的设计。目前,风力涡轮机的实验测试很少,大部分空气动力学设计都是使用 PROFIL 和 XFOIL 等计算工具完成的。计算流体动力学 (CFD) 预测正在改进,将成为风力涡轮机叶片设计的杰出工具;但是;这些代码不够稳健,无法预测低雷诺数下的性能。风力涡轮机的 CFD 代码几乎没有经过实验室验证,尤其是低雷诺数的 CFD 代码。通常,风力涡轮机都是按全尺寸设计和制造的。因为风洞测试通常是在现场测试,以与设计预测进行比较。然而,现场测试也可能是一个非常昂贵的过程。本章将重点介绍对风力涡轮机叶片进行实验测试的必要性,以确定在典型雷诺数下运行的翼型升力和阻力数据,以及对风力涡轮机系统(叶片和发电机)进行测试以确定整体风力涡轮机性能。这种类型的测试应该在建造全尺寸机器之前完成,因为通过风洞测试可以达到更好的设计。叶片元素动量理论 (BEMT) 通常用于小型风力涡轮机的设计,这种设计方法在很大程度上取决于精确的翼型数据的使用。因此,对于小型风力涡轮机,在适当的雷诺数下获取的高质量实验翼型数据对于准确设计和预测发电量是必不可少的。所呈现的数据适用于风洞
3.2当替代安全的工作系统不是另一组WTSR 3.2.1确认确认,首席承包商/公司具有识别危害和消除危害和/或控制它们的手段的过程,以便满足立法要求。3.2.2确认首席承包商/公司有培训和授权记录以涵盖作品范围。3.2.3确认首席承包商/公司对WTG的了解要属于其SSOW(可能需要熟悉站点)。3.2.4确认首席承包商/公司具有正式实施其SSOW的流程。3.2.5确认如何实现WTG的安全访问和出口,并保留哪些记录。