波兹南理工大学 ORCID:1. 0000-0003-2725-2614;2. 0000-0002-3622-8889 doi:10.15199/48.2022.11.60 风力涡轮机功率特性对发电量影响的分析 摘要。以下文章介绍了风力涡轮机功率特性对总发电量的影响。科学文献的回顾表明需要进一步分析这个问题。为此,对八台 3kW 风力涡轮机的性能参数进行了分类,对其运行特性进行了建模,并包括在波兰的示例位置进行的基本环境参数的样本测量。利用收集的数据,不仅制作了风速直方图,还计算了特定月份的平均风速。然后,进行了模拟研究,以确定给定位置的最佳风力涡轮机。年度最大发电量是选择过程中的主要标准。 (分析 wpływu charakterystyk mocy turbin wiatrowych na ilość wytwarzanej energii)Streszczenie。 Wartykule przedstawiono wpływ charakterystyk mocy turbin wiatrowych na całkowitą ilość wytwarzanej mocy。对文学的分析W tym celu skatalogowano parametry pracy ośmiu turbin wiatrowych o mocy 3kW każda, zamodelowano ich charakterystyki eksploatacyjne, uwzględniając przykładowe pomiary istotnych parametrów środowiskowych, które wykonano w przykładowej lokalizacji na terenie Polski。 Dzięki zebranym danym wykonano nie tylko 直方图预测、调整和预测。 Następnie zrealizowano badania symulacyjne,które przeprowadzono w celu określenia najbardziej optymalnej turbiny wiatrowej dla danej lokalizacji。 Głównym kryterium wytworzonej mocy 的处理过程。关键词:风力发电机;功率特性建模;风速直方图;风力涡轮机模拟。 Słowa kluczowe: turbina wiatrowa; modelowani charakterystyk mocy;直方图 prędkości wiatru; symulacja turbiny wiatrowej。简介 风力涡轮机,通常称为风力发电机,是一种能够将风的动能转化为发电机涡轮叶片的机械运动,从而产生电能的设备。尽管风能似乎无处不在,但并非地球的每个角落都能提供有效生产电能的最佳条件。其总量在很大程度上取决于风力涡轮机的各种技术和性能参数以及风力发电机所在位置的环境条件。只有正确分析和相互关联这些因素,才能确保快速收回投资成本。这对于在分布式储能系统中使用风力涡轮机尤为重要,因为分布式储能系统的实施成本很高。通过将分析的涡轮机与位置进行适当匹配,投资成本的回收时间会缩短,从而提高投资的盈利能力。对于使用储能和灵活集成的可再生能源的投资,选择最佳的风力涡轮机可以为整体经济平衡带来最大的节约。尽可能充分利用风力涡轮机产生的电力可以限制所需的储能容量,从而降低投资和服务成本。这就是为什么作者将这个问题作为设计大型分布式系统的重要元素,以利用具有储能可能性的可再生能源发电。许多科学家试图精确确定目前在世界范围内应用的解决方案 [1-3] 的性能参数,以了解它们在风能领域的成本效益。例如 [4, 21] 中的一些问题解决了严格的机械性质问题,例如选择最佳机械和最佳调整其参数。在各种出版物 [5- 10] 中可以找到不同的解决方案或更新风力涡轮机控制系统的建议。如今,科学研究 [11, 12] 更加关注风源分散和多样化问题,以保持风力涡轮机的稳定性和安全性。12]更加关注风源分散和多样化问题,以维护电网的稳定和安全。12]更加关注风源分散和多样化问题,以维护电网的稳定和安全。
在体育界,Covid-19大大削减了正常活动,并导致了许多国家和国际活动的推迟和取消。 在过去的一年中,在运动中发生的几项研究Covid-19的传播是在运动中发生的,而严格的感染控制程序在防止SARS-COV2传播方面是核心,但精英和竞争性的COVID-19疫苗接种问题,但休闲运动员正在迅速成为个人运动员,体育团队和组织的紧迫问题。 运动临床医生现在面临着几个重要的考虑因素,包括运动对疫苗功效的影响,潜在的副作用,给定运动员或一群运动员的最佳疫苗类型(如果选择变得相关),有关疫苗时间的建议,以及疫苗接种的时间,以及疫苗接种是否可以阻止SARS-COV-2传输。在体育界,Covid-19大大削减了正常活动,并导致了许多国家和国际活动的推迟和取消。在过去的一年中,在运动中发生的几项研究Covid-19的传播是在运动中发生的,而严格的感染控制程序在防止SARS-COV2传播方面是核心,但精英和竞争性的COVID-19疫苗接种问题,但休闲运动员正在迅速成为个人运动员,体育团队和组织的紧迫问题。运动临床医生现在面临着几个重要的考虑因素,包括运动对疫苗功效的影响,潜在的副作用,给定运动员或一群运动员的最佳疫苗类型(如果选择变得相关),有关疫苗时间的建议,以及疫苗接种的时间,以及疫苗接种是否可以阻止SARS-COV-2传输。
如今,推力轴承承受着不断增加的速度和负载,同时又受到空间狭小的限制,并将体温保持在 API 要求的范围内。因此,轴承制造商不断寻找满足客户需求的下一款“超级轴承”。本文介绍了三种不同的均衡推力轴承设计及其在试验台上的性能。第一种设计是传统的浸没式轴承,其余两种设计是定向润滑轴承。所有轴承均衬有 ASTM 2 级巴氏合金,并具有相同的高 (65%) 枢轴偏移,以帮助它们在极端测试条件下生存。轴承承受的负载增量在几种不同的轴速下终止于触发警报的温度。测试表明,其中一种定向润滑设计能够比其他两种设计承受更高的轴承负载,同时在中高速度下具有较小的轴承面积(平均轴承直径为 206-345 fps (62.8-105.2 m/sec))。我们声称,这种轴承设计是满足上述客户需求的一步。我们进行了初步的计算流体动力学模拟,以研究设计中的流动模式,希望深入了解其冷却机制。最后,我们证明了根据经典热油携带理论重现单个轴承性能的难度。
本报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,也不是巴特尔纪念研究所,或其任何雇员,对任何信息,设备,产物或程序披露或代表其使用的任何法律责任或责任都没有任何法律责任或责任,或者对其使用的准确性,完整性或有用性都不会侵犯私人权利。以此处参考任何特定的商业产品,流程或服务,商标,制造商或以其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或Battelle Memorial Institute的认可,建议或赞成。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
4. 路边洼地应浅且坡度适中,以防止冲刷。在陡峭区域,应设置拦蓄坝以降低流速并提供源头控制淤泥遏制。必要时,拦蓄坝将与沉淀池和/或横向排水沟一起设置。
随着可再生能源和电力电子技术的渗透率不断提高以及系统惯性不断下降,快速频率调节 (FFR) 正成为提高电力系统频率稳定性的关键措施。尽管已经提出了不同的控制方法来为风力发电机 (WTG) 提供有限的虚拟惯性和频率支持能力,但尚未充分研究 WTG 和电池储能系统 (BESS) 之间的协调以及潜在的优化优势。本研究提出了一种 WTG 和 BESS 的协调控制,为交流系统提供 FFR,同时延长电池的循环寿命。首先,提出了一种经济高效且基于 SOC 的 BESS 单独 FFR 策略。然后,通过分析 WTG 的运行特性,提出了一种适用于所有风速下的 WTG-BESS 混合系统的协调 FFR 方法。提出的协调策略在不同运行条件下提高了 FFR 性能,延长了电池的循环寿命并降低了电池成本。基于变化风速的模拟结果表明,提出的FFR策略提高了频率最低点并避免了频率二次下降。
本文涉及永久运动的最佳能源收集系统设计。这种设计在促进新产生的新来源方面具有灵活性。电能的需求每天都在呈指数增长,因此有必要以低成本寻找替代的能源产生方式。此外,考虑一下化石燃料将要补充,因此除了化石燃料之外,还应使用其他资源。化石燃料的替代品是可再生能源。风能是可再生能源的主要来源之一。该系统中的永久运动是另一个新的创新。整个系统可用于产生电能,而不会对自然造成任何伤害。使用该系统,完全可以消除对连续自然风能来源的依赖。永久运动系统将产生风向能量收集系统,以便可以操作风力涡轮机发电机,然后产生电力。该系统也可以连续运行,而不取决于天气的当前状况。永久运动机(PMM)产生的能量通常会被科学界打折,因为它们在工业层面上被认为是不可能的,但是对于小型操作而言,PMM可能会变得非常有效。
预计 27MW 水平轴风力涡轮机 (HAWT) 平台将成为 2040 年风力涡轮机的标准配置,叶片长度必须达到 145 米左右。这就需要叶片设计坚固,考虑到设计、生产、测试和运行中所有固有的不确定性,以准确预测使用寿命并获得可靠的维护间隔。超长叶片的纤细性需要更符合气动弹性的设计。此外,我们预计设计将以分段叶片为目标,不仅为了方便运输,而且还为了减少叶片本身和安装设备的搬运和安装负荷。未来的叶片将使用一种综合方法进一步优化,该方法将气动弹性和结构行为要求与使用寿命、坚固性和表面退化等考虑因素相结合。这种综合优化将涉及整个叶片设计,包括分段位置和连接技术。还确定了用于结构健康监测的集成传感器的最佳位置。这为自由形式设计优化程序带来了机会,例如用于设计叶片剪切载荷承载结构的拓扑优化。设计中的一些优化只能通过更自动化的制造来实现。提高生产线某些部分的重复质量,每天 24 小时不间断生产将减少出错空间并减少人工劳动。叶片部分
作为技术转让示范的一部分,研究人员将 2D 翼型逆向设计工具 (INN- Airfoil) 集成到风力发电厂综合系统设计和工程模型 (WISDEM) 中,这是一个用于评估能源成本的多学科设计和优化框架。风力涡轮机设计的传统方法涉及从一组预先选定的 2D 翼型中创建 3D 叶片。然而,设计的多学科性质意味着空气动力学效率最高的翼型可能不是所有类型的风力涡轮机设计约束的最佳选择。
本作品部分由美国国家可再生能源实验室撰写,该实验室由可持续能源联盟有限责任公司运营,为美国能源部 (DOE) 服务,合同编号为DE-AC36-08GO28308。部分资金由美国高级研究计划署-能源 (ARPA-E) 设计智能促进强大的能源减少和实现新颖的完全有影响力的先进技术增强 (DIFFERENTIATE) 计划提供。本文表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留,并且出版商在接受文章发表时承认美国政府保留非排他性、已付费、不可撤销的全球许可,可以出于美国政府目的出版或复制本作品的已出版形式,或允许他人这样做。本作品是美国政府作品,不受美国版权保护。