进行热交换器,制冷系统或发电厂。不幸的是,通常的传热液(例如水和聚合物溶液)具有相对较低的热电导率。改善热萃取的一种方法是将传热液的流量与某些固体材料的高热电导率相结合,例如金属,金属氧化物或不同的碳材料:碳黑[6],碳纳米管[9],碳纳米含量[4] [4]或石墨烯Nananoplatelets [29]。然而,使用微米尺寸的固体材料的悬浮液会导致并发症,例如磨损,沉积和堵塞。石墨烯是六角形键合的碳原子的单原子薄片,由Novoselov等人优雅地获得并表征。[18],现在是研究最多的材料之一。The importance of graphene nanoplatelets and their benefits have been investigated, and the following advantages have been mentioned [ 22 ]: (1) it is relatively easy to synthesize, (2) it has long suspension time (leading to stable particle suspensions), (3) graphene nanoplatelets have large surface area/volume ratio, and (4) present low erosion, corrosion and clogging.这种悬浮液的动态粘度也是传热中实际应用的重要特性。大多数科学文献是关于水中的悬浮液,有时是表面活性剂/分散剂[1、2、10、12、19],证明了石墨烯纳米片浓度会导致粘度非线性增加。meh-Rali等。伊朗曼什等人。此外,几位作者研究了石墨烯纳米片的粘度[27],并显示出强大的温度降低。[16]制备的均质石墨烯纳米板 - 让使用高功率超声探针的悬浮液,以浓度为0.025、0.05、0.05、0.075和0.1质量%,对300、500、500、500和750 m 2 g-1的三个不同表面区域进行悬浮液。他们测量了在20至60°C的温度下,水平纳米片的粘度与剪切速率的粘度。观察到粘度随温度降低,但对浓度和特定表面积敏感。在水中,graphene纳米片悬浮液的样品也表现出剪切粉,可以解释如下。在较低的剪切速率下,随着纳米板旋转的液体旋转,它们逐渐使它们沿增加剪切的方向对齐,从而产生较小的耐药性,从而降低粘度。当剪切速率足够高时,达到了最大可能的剪切顺序,骨料分解为较小的尺寸,降低粘度[7,25]。[11]还研究了分散在蒸馏水中的石墨烯纳米片的粘度和热导电,并研究了三个有影响力的参数,包括浓度,温度和特定表面积。他们提出了相对粘度作为不同特定表面积,浓度和温度的函数的相关性。
自 1950 年代以来,二硫化钼涂层就被用作航天器的润滑剂,但仍然面临着重大的工程挑战,包括在陆地空气和深空真空环境中的性能以及数十年无需维护的使用寿命。 MoS 2 与添加剂化合物的共沉积在某些情况下已经取得了进展,但一种可以在所有面向太空的环境中工作且使用寿命长的润滑剂仍然是一个持续存在的问题。在此,我们展示了一种新型 MoS 2 + 钽润滑涂层的多环境适应性能,该涂层在陆地和太空环境中均表现出色,而基准的太空级商用 MoS 2 润滑剂涂层则不然。值得注意的是,10% 钽添加剂在空气中表现出优先氧化以保持 MoS 2 的润滑能力,同时形成 TaS 2 相,这有助于 MoS 2 在超高真空中的出色润滑。此外,在空气和真空环境中,分别观察到完全不同的小颗粒和致密片摩擦膜,这使得单一涂层可以根据环境调整润滑机制。这种新型涂层树立了标杆,成为第一个完全通用的太空润滑剂实例,在陆地和深空环境中均具有高性能。
https://doi.org/10.26434/chemrxiv-2025-t5www orcid:https://orcid.org/0009-0009-2330-0241 content content content contem content not chemrxiv未通过chemrxiv进行同行查看。许可证:CC BY-NC-ND 4.0
清洁润滑点以达到最佳效果。首次填充前,去除防腐剂。填充轴承以确保所有功能表面都涂有油脂。填充普通轴承至轴承内部自由空间的 1/3 左右。低速轴承(DN 值 < 50,000)及其轴承座应完全填充。应遵守轴承和机器制造商的说明。随后使用注油枪或自动润滑系统在润滑嘴处润滑。根据使用条件评估润滑频率和数量。如果无法去除旧油脂,则限制油脂量以避免轴承过度润滑。如果润滑频率往往较低,则应尽量更换全部油脂。仅与合适的润滑剂混合。
人体中所有相互滑动接触的表面均由亲水性生物聚合物构成的柔软、透性组织构成。 [1] 此类系统的一个关键特性是低摩擦,从而减少磨损并确保相互滑动的表面具有较长的使用寿命。 [2] 人体中极其有效的润滑(例如滑膜关节和眼睑-角膜界面)启发了许多关于人造材料摩擦学的研究,尤其是模拟这种行为的水凝胶。 [3–10] 软组织或水凝胶中发生的润滑现象不同于两个由流体润滑的硬表面相互滑动时的摩擦机制 [2,10–12],因为在这种软系统中,膨胀的固体基质与该基质内流体之间的相互作用在决定摩擦行为方面起着重要作用。 [7,9,13–16]
PETRONAS Lubricants International (PLI) 是马来西亚充满活力的全球能源集团 PETRONAS 的全球润滑油制造和营销部门。PLI 成立于 2008 年,在全球 100 多个市场生产和销售全系列高品质汽车和工业润滑油产品。PLI 总部位于吉隆坡,在都灵、贝洛奥里藏特、北京和芝加哥等世界各地设有办事处。PLI 是 PETRONAS 与梅赛德斯-AMG PETRONAS 一级方程式车队合作背后的技术资源,负责设计、开发和交付流体技术解决方案™,其中包括为银箭提供动力的定制润滑油、燃料和变速箱油。
通过纳米线阵列的毛细管上升润滑实现润滑剂耗尽的抗滑动液体注入多孔表面 Hong Huy Tran、Youngjin Kim、Céline Ternon、Michel Langlet、David Riassetto、* 和 Daeyeon Lee* Hong Huy Tran、Youngjin Kim 博士、Céline Ternon 教授、Michel Langlet 博士、David Riassetto 教授 Univ.格勒诺布尔阿尔卑斯、法国国立科学研究院、格勒诺布尔 INP(格勒诺布尔阿尔卑斯大学工程学院)、LMGP、38000 格勒诺布尔、法国 电子邮件:david.riassetto@grenoble-inp.fr Daeyeon Lee 教授 宾夕法尼亚大学化学与生物分子工程系,宾夕法尼亚州费城 19104,美国 电子邮件:daeyeon@seas.upenn.edu 关键词:液体注入表面、润滑剂消耗、润湿脊、ZnO 纳米线阵列、毛细管作用 尽管润滑剂在各种应用中都具有良好的前景,但随着时间的推移,润滑剂的消耗会带来
© 作者 2024。开放存取 本文根据知识共享署名 4.0 国际许可协议进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可协议的链接,并指明是否做出了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可协议中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可协议中,且您的预期用途不被法定规定允许或超出了允许的用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。
当相对的浅砖(金属表面上的微观投影)破坏了竞争者油的油膜时,会发生表面发起的疲劳,这会导致轴承表面快速磨损并变得更粗糙。振动稳步增加,因为这些粗糙的表面不再被油的薄膜完全分离,从而导致金属对金属接触的增加。Synerlec添加剂技术的艰难胶片强度不仅使Asberities违反石油膜更加困难,而且实际上它会使已经损坏的轴承表面平滑。,皇家紫色的Synerlec添加剂技术并没有变得更粗糙,而是微调这些令人垂涎,形成了更光滑的表面,然后很容易被皇家紫色的艰难石油胶片隔开。受损的轴承经历高振动的轴承通常可以通过使用Synerlec添加剂技术更换为皇家紫色的油,从而大大延长时间。(请参阅技术附录中的第34-35页。)