摩擦引起的磨损是能源消耗和设备故障的主要原因,而石墨烯是一种新型的固体润滑剂,已成为摩擦学工程中的热门话题。微/纳米级和宏观超级润滑性,并且通过化学蒸气沉积(CVD)产生高质量石墨烯的能力很有吸引力,尤其是对于需要在严格工作条件下运行的应用。这项全面的综述讨论了固体石墨烯润滑剂的结构和摩擦特性之间的关系,宏观上级超级润滑性的机制,与严格的工作条件有关的应用,延长宏观上级超润滑性的策略以及为基于石墨烯基于基于石墨烯的固体固体润滑剂提供指导的挑战,以及为挑战提供挑战。
通过利用绿色润滑剂来实现工程钢上的宏观上级润滑性,鉴于其减少能源消耗和碳足迹的巨大潜力,它引起了人们的兴趣。然而,在长时间的持续时间内保持在不同的滑动条件下的高级润滑性是实时应用的主要障碍。在此,我们报告说,在自我测定的钢触点中,基于甘油甘油触发宏观级超润滑的独特润滑机制启用了坚固耐用的摩擦膜。专门的间歇性测试旨在显示超级润滑性的鲁棒性以及互感适应各种相关滑动条件的能力。此外,边界膜提供的平均摩擦系数约为0.007,最高69%的磨损降低(与基础润滑剂相比),从而在123 MPA的真实最终接触压力下维持超级润滑性,与电流润滑钢接触相比,接触压力的上限增加了上限。通过CGQD的化学吸附到磨损的金属表面上,将新的级润滑机制与摩擦诱导的结构降解以及CGQDS转化为分层的石墨结构,从而产生适合适应的低皮界面。这项工作为CGQD在实现超级润滑性中的化学吸附和结构转化的作用提供了新的见解,并且是实施用于工业应用的能源效率和绿色润滑技术的重要一步。
问:过渡到生物柴油是否需要对运营基础设施或发动机进行任何改造?答:生物燃料作为低碳燃料解决方案的最大优势之一是,它几乎可以在任何现有设备和基础设施上实施,对运营几乎没有影响。事实上,与石油柴油相比,生物柴油可以提供一些发动机性能优势,包括改善润滑性和燃烧,这有助于减少柴油颗粒过滤器 (DPF) 堵塞和再生。生物柴油燃料混合物可以帮助减少颗粒物 (PM),而颗粒物可能会对运营产生影响。
图2:(a)摩擦行为的系数显示MOS 2 -TI 3 C 2 t X固体润滑剂涂层在各种接触载荷下以0.1 m/s的单向滑动,作为干氮的滑动距离的函数。(b)稳态摩擦值与钢对钢,MOS 2-steel和ti 3 C 2 t x X-On-Steel引用并置。(c)在环境条件下在20 N和0.1 m/s下测量的摩擦系数与在干燥的氮条件下的摩擦相反,显示了湿度对摩擦学性能的影响。(d)钢基材上的涂料磨损是在相同距离滑动后正常负载的函数。摩擦被观察到随着正常载荷(接触压力)的增加而减小的,20 N测试条件超过了超级润滑性阈值的数量级(0.0034)。磨损率随着摩擦等负载的增加而降低。
对于适用于柴油燃烧的生物燃料,主要问题与润滑剂被燃料稀释有关,燃料容易生物降解,并且对某些材料具有腐蚀性。对于乙醇,由于润滑剂粘度降低和润滑剂中含水量增加,磨损情况恶化。此外,乙醇会与润滑剂发生反应。这会增加润滑剂的酸性和某些润滑剂添加剂的分解。除此之外,乙醇中水含量的增加(这种情况经常发生)会增加发动机腐蚀。对于甲醇,会出现与乙醇加水相同的问题。中国的经验总结了更具体的材料问题,这些总结在表 6 中。此外,甲酸的形成对抗磨性能有负面影响。甲醇、润滑剂和水在低温下会形成乳液,这会导致润滑剂失效。润滑剂需要提高碱值和抗氧化性能才能使发动机正常工作。最后,火花塞会出现点蚀和烧蚀。据报道,氢气会导致表面脆化、燃油喷射器故障(由于润滑性差)并阻止表面保护氧化物的形成。此外,氢气会以多种不同的方式降低润滑剂添加剂含量,并可能导致润滑剂乳化。最后,气缸套上的水凝结会导致过度磨损。氨是一种用于内燃机的相对较新的燃料。因此,需要更多的经验来完全描述燃料对磨损的影响。然而,据报道,它对铜合金有腐蚀作用,预计其他材料也是如此。据报道,胺会导致润滑剂粘度增加,排气中高水含量预计会因气缸套上的水凝结而导致过度磨损。在 21 世纪初期,DME 被视为一种替代柴油的潜在燃料。DME 的问题在于它是一种极好的溶剂,可能会损坏大多数材料。然而,由于 2000 年代初人们对应用 DME 的极大兴趣,人们已经发现了耐 DME 的材料。DME 的低润滑性导致燃油喷射系统表面磨损。人们已经开发出添加剂来缓解这一问题。
摘要在这项研究中,厚度为50-100 nm的石墨烯纳米板(GNP)已被用来改善A360合金的机械和摩擦学特性,因为它们的非凡机械性能和固体润滑性性质。为了研究摩擦学特性,在各种温度下进行了圆盘测试,包括室温(RT),150 C和300 C。纳米复合材料的磨损行为的改善被称为磨损过程中暂时形成的硬质量GNP的固体润滑膜,因此摩擦系数(COF)和体积损失大大降低。磨料 - 粘合剂,氧化和轻度至关重要分别是RT,150 C和300 C的主要磨损机制。总体而言,结果表明,通过铸造方法与机械搅拌和超声化相结合制造的纳米复合材料具有有希望的磨损性能,尤其是在升高的温度下。这可能表明这些开发的材料可能是需要在需要高温磨损性能的工程应用中使用的潜在候选者。
ASTM 美国材料与试验协会 ATJ-SKA 含芳香烃的酒精喷射合成煤油 au 任意单位 BOCLE 气缸球润滑性评估器 CAAFI 商用航空替代燃料倡议 CLEEN 持续降低能耗、排放和噪音 CO 一氧化碳 CO 2 二氧化碳 CSD 横截面直径 cSt 厘斯 EI 排放指数 ERC 能源研究顾问 EtOH 乙醇 EU 欧盟 f/a 燃油空气比 FAA 美国联邦航空管理局 FANN 全环形 FFP 适合用途 FSN 燃油喷嘴 FT 费托合成 H 2 氢 HEFA 加氢酯和游离脂肪酸 in. 英寸 IRHD 国际橡胶硬度 LBO 贫油熄火 M 百万 毫米 毫米 NextGen 下一代 NHC 净燃烧热 NOx 氮氧化物 PDI 相位多普勒干涉法 SAF 可持续航空燃料 SH 硫-氢 SMD 索特平均直径 SPK 合成石蜡煤油 UDRI 代顿大学研究研究所 UHC 未燃烧碳氢化合物 美国 美国 WSD 磨痕直径
自超润滑是一种备受期待的现象,即某些固体对在没有润滑剂的情况下接触时,磨损为零,静摩擦和摩擦系数 (CoF) 几乎为零。我们首次在实验中观察到了微尺度单晶石墨薄片与纳米级粗糙金基底接触时的自超润滑现象,当施加的法向压力超过临界阈值时,即可实现这种现象。理论分析表明,基底粗糙度会阻碍低压下的完全接触,但增加压力会引发向完全接触的转变,从而实现自超润滑。我们为这种临界压力建立了一个无量纲标准,并通过观察石墨和原子级光滑蓝宝石基底之间的自超润滑性进一步验证了这一点,而无需额外的压力。这一突破为下一代微系统(如微/纳米级发电机、电机、振荡器、传感器等)引入了一种变革性原理,可在 6G 通信、人形机器人和无人机等应用中降低功耗并延长使用寿命。