该项目旨在设计一套实时测量液体粘度的系统,适用于加热蜂蜜或气凝胶凝胶化等动态应用。粘度是描述液体流动行为的关键参数,会因温度或化学反应等外部因素而发生变化。该系统将基于适当的测量原理,实现连续数据采集,并在超过定义的阈值时发出警告。除了硬件开发(包括传感器集成和信号处理)外,还将实施用于实时数据分析和阈值监控的软件解决方案。目标是创建一个功能原型,在各种应用场景中提供精确、稳定和可靠的测量。
摘要:能量收集是从周围环境中提取少量能量的过程。周围环境的特点是各种可用的能源,如太阳能、风能、振动、气体、液体流动等,这些能源可以转换成可用的能量。振动能量收集是一种从振动源收集环境能量的机械过程,可以使用不同的转换技术将这些能量转换成电能。振动能量在城市和工业环境中是可用的,但它往往被忽视作为一种电力来源。主要的收集技术是电磁转换、静电转换和压电转换。本文将回顾研究人员在过去的几年里在这个领域开展的工作,并比较不同的转换技术。关键词:能量收集、能量转换、电磁、静电、压电 1. 引言
多孔传输层是低温电解装置的重要组成部分,例如质子交换膜水电油夹或阴离子交换膜水电油层。PTL对细胞性能具有显着影响,因为它们的大量电阻会影响欧姆电阻,它们的接触电阻会影响电极性能,并且它们的结构会影响到细胞的液体流动,这可能会导致大规模传播损失。为了提高细胞性能,PTL的优化至关重要。应使用标准化协议来充分比较来自不同机构的PTL。此方法将详细介绍使用四线设置来测量PTL电阻的标准化协议,并将详细介绍使用毛细管流孔径测量PTL的孔隙率和水接触角的过程。
3. 验证结果与讨论利用洛斯阿拉莫斯国家实验室 (LANL) 使用钠热管的实验 [10] 研究了本方法的可行性。LANL 建造并测试了不锈钢钠热管模块,以用于空间核反应堆的热工水力模拟。图 2 显示了带有四个筒式加热器的热管模块的剖面图。表 I 提供了热管的主要尺寸。环形灯芯由 304L 不锈钢丝网制成。灯芯由一个 100 目丝网的支撑层、三个 400 目丝网的毛细管泵送层和两个 60 目丝网的液体流动层组成。有效孔隙半径测试验证了灯芯的孔隙半径小于 47 微米。
驱动机制包括气动/流体动力压力、24 电润湿 (EW)、14,21,25 - 27 介电泳 (DEP)、19,28 - 31 等。其中,DEP 方法利用电场,由于其体积小、易于制造和静态液体流动(即无需连续供应液体)等独特优点,有利于芯片实验室集成。它还能够快速响应(约 1 毫秒)并具有焦距的宽可调性(例如,从负到无穷大再到正)。32,33 此外,电驱动液体透镜通常具有高可靠性和长寿命,因为它们不需要机械运动部件。在已报道的可调液体透镜中,它们中的大多数操纵界面的整体曲率并保持球面形状。8,34因此,球面像差变得不可避免,导致成像质量差。在平面液体透镜中,周边光线和近轴光线的焦距差异会导致纵向球面像差 (LSA)。在传统的大型光学系统中,像差由多透镜系统补偿。但在微流控芯片中,很难精确控制多个单独的透镜。因此,操纵局部曲率是实现无像差系统的可行方法。已经提出了各种机制来实现平面外非球面光流控透镜。35 一种简单直接的方法是使用预成型膜 36 – 38 或非圆形孔径 39 来调节液体透镜的非球面性。其中,静电力的使用已被证明
尽管取得了上述进展,但是由于SRFB在高温下固有的热阻,导致PEC充电装置光电压损失,因此人们对其实际应用的看法并不乐观。例如,c-Si装置的功率损失率为0.45%/℃(70℃时损失约200mV)。14具体来说,光电压损失会消除氧化还原化学反应的驱动力。然而,尚未对热对RFB光充电性能的影响进行彻底的定量分析。SRFB的独特工作原理是电解质流动产生了一条通路,该通路可以通过从光电极到液体流动的热量传递来弥补热损失,液体流动直接位于光电装置后面,如图1a所示。这意味着电解质有效地充当了冷却剂。在这里,我们讨论了光充电性能在氧化还原液流电池应用中的热电化学行为,并使用基于我们之前验证过的研究 12 和传热理论的组合模型揭示了 PEC 设备集成系统的协同效应。15 为了有效地传递内容,我们开发了一种创新的多功能光充电电池概念(图 1a)。我们使用了从科罗拉多州国家可再生能源实验室 (NREL) 获得的典型冬日和典型夏日的真实太阳光谱数据 16(图 1b)。建议的设计使用主动热管理,采用传热和强制
运动和保护定律法律:参考框架,牛顿运动定律,工作和能量定律,均匀的循环运动,能量和动力的保护。保守和非保守力量,火箭运动,中央力场运动的运动,开普勒的行星运动定律,牛顿的重力定律,引力场,潜在的和潜在的能量,潜在的能量,引力电位和球形壳的场强度。卫星,全球定位系统(GPS)的基本思想。旋转运动:颗粒系统,质量中心,角速度和动量,扭矩,角动量的保护,运动方程,惯性矩,平行和垂直轴的定理,杆的惯性矩,杆的惯性矩,矩形层,圆形层,圆形,固体,固体,固体壳,螺旋壳的能量,旋转,旋转,旋转。流体:表面张力和表面能,表面跨表面的压力过大:在球形滴和气泡上,表面张力随温度变化-Jaeger的方法。粘度:液体流动,连续性方程,流体能量,伯诺利定理,Poiseuille的方程和方法,以确定粘度系数,具有温度弹性的液体粘度的变化:Hooke的定律,压力,压力,刺激,弹性势能,弹性模态,弹性的模态,弹性的模态,弹性,弹性的繁殖式,固定的紧迫性,固定的紧迫性,固定的速度,强度,固定的速度,固定的速度,良好的态度在伸展和扭曲电线,在圆柱上扭曲的夫妇,扭曲圆柱体中的应变能量,通过stat和动力学方法(Barton's和Maxwell的针头)确定刚度模量(Barton's and Maxwell's Needle),Torsional Pendulum,Young的模量,横梁的弯曲,Y Y Y Q的确定,以及SEARLE的iTertia Mist and Mist and Searle's Methot。
普渡大学,2023 年 1 月 27 日 摘要 目的。基于血管周围空间的解剖学和力学,探索脑间质组织液流动的生物物理学,以便更好地了解淋巴液流动的发生方式。方法。在可快速计算的、分支的、多尺度的脑组织几何模型中研究心脏频率下的液体流动动力学。这些模型由混合的穿透动脉和静脉树提供。它们包括颅内压和血管内压的脉动变化、脑组织的弹性扩张以及沿 Virchow-Robin 空间轴的脑脊液流动阻力的非线性变化。在笔记本电脑上计算由此产生的动脉周围和静脉周围压力的变化以及由此产生的从小动脉到小静脉血管周围空间的间质液批量流量。结果。在典型的生理条件下,较小的远端动脉周围分支和静脉周围分支之间会产生约 0.5 mmHg 的时间平均正压。根据组织几何形状和液压阻力,产生的流量足以每 1 到 10 小时更新一次间质液。增加血管周围空间的径向宽度会降低这种效果。计算出的整个大脑的平均淋巴流量与蛛网膜绒毛测量到的新脑脊液产生量相似。结论。当适当考虑血管周围树的分支结构时,它们的经典解剖结构具有令人惊讶的新兴特性。在动脉周围和静脉周围空间较小的远端分支之间可以发生具有生物学意义的平流量。关键词。平流、阿尔茨海默病、淀粉样蛋白、生物物理学、血脑屏障、体积流量、脑脊液、循环、细胞外、液压、颅内压、血管周围泵送、通透性、软脑膜、脉动、蛛网膜下腔、Virchow-Robin 腔、废物。
摘要。本文研究了麦克斯韦混合纳米流体(Cu-Al 2 O 3 /水和CuO-Ag/水)在延伸薄片上的驻点处的情况。该问题的动机在于它在提高现代传热应用中的热效率方面具有潜在重要性,这对于优化制造工艺和节能技术至关重要。因此,本研究研究了非牛顿麦克斯韦纳米液体穿过混合对流边界层(BL)并传播热量通过包含混合纳米颗粒的收缩/拉伸表面。在当前的工作中,涉及两种不同类型的混合纳米流体:Cu-Al 2 O 3 /水和CuO-Ag/水。将铜颗粒(Cu)和氧化铜颗粒(CuO)混合到Al 2 O 3 /水和Ag/水纳米流体中以研究这两种类型。流动受到均匀磁场(MF)和驻点的影响。问题源于它们增强的导热性和传热能力,这对于提高先进冷却系统和涉及驻点流的工程应用中的能源效率至关重要。通过利用适当的变换,偏微分方程 (PDE) 被转换为常微分方程 (ODE)。原型利用四阶龙格-库塔 (RK-4) 方法结合射击技术进行计算分析。当前工作的成果对驻点流具有适用意义,例如核反应堆的冷却、支持者对微电子程序的冷却、拉丝、聚合物挤出和许多工程流体动力学应用。从理论和数值上研究了所选因素对温度、速度、传热速率和表面摩擦系数的影响。发现不同混合纳米粒子的存在以及其他参数的影响对速度和温度分布都起着重要作用。此外,驻点在液体流动中产生了分离极限,从而逆转了这些流动区域之间的磁场影响。 2020 数学科目分类:76A05、76D10、76W05、80A20、65L06 关键词和短语:混合纳米流体、非牛顿麦克斯韦流体、驻点、磁流体动力学、拉伸表面