化疗药物通过靶向细胞的一般功能(如 DNA 复制、有丝分裂和关键的信号转导途径)在增殖的癌细胞中诱导所需的毒性作用。这意味着整个身体的正常细胞生长和发育也会受到非靶向介导的毒性作用的影响。整个肠道上皮每 4 - 5 天由肠上皮隐窝中快速分裂的干细胞不断更新一次。3 其后果是脱靶胃肠道 (GI) 毒性或化疗药物引起的粘膜炎。它影响多达 80% 接受化疗的癌症患者(美国和欧洲每年有超过 100 万患者 4,5 ),以及接受某些靶向抗肿瘤药物治疗的患者。6,7 临床上,它主要与严重的腹泻有关,8 但厌食、疼痛、恶心和败血症也很常见。腹泻严重降低了患者的生活质量,通常需要减少剂量以限制治疗效果,可能会致命,并且其治疗需要大量的医疗保健费用。9 对于某些特别具有胃肠道毒性的药物,例如 5-氟尿嘧啶 (5-FU) 和伊立替康 (IRI),约三分之一的患者为重症,即腹泻 3 级和 4 级 10 这意味着每天排便次数超过正常次数七次,甚至出现血流动力学紊乱。腹泻的主要症状包括大便稀薄、排便频率和/或紧迫性增加以及大便失禁,伴有或不伴有疼痛。腹泻是由以下原因引起的:(i) 液体和电解质分泌增加,(ii) 液体和电解质吸收减少,(iii) 肠道蠕动增加和/或 (iv) 渗出性腹泻,其中上皮细胞破坏导致水、电解质、粘液、蛋白质和细胞的渗漏。 11,12 肠道液体流量和运动失调的原因包括感染、炎症、过敏、细菌失衡、吸收不良以及前面提到的化疗。对于化疗,腹泻通常在治疗开始后的几天内发生,并在几天或几周后逐渐减轻。化疗通过改变肠道完整性、运动和正常分泌功能直接引起腹泻,并可能通过影响肠道微生物群间接引起腹泻。13
分析程序虽然同时是采用低成本塑料芯片的一种资源有效的便携式技术。[2]它被广泛用于各个领域,包括化学分析,生物传感系统,医学开发,临时诊断点,实验室芯片(LOC)设备(LOC)设备和芯片上的器官。[3]为了有效地控制和操纵流体,微流体系统需要一些有源组件,例如喷油器,泵,阀门和混合器。[4]已经开发了各种作用机制,例如气动,形状 - 内存合金,压电,二电,电磁和静电,以驱动这种活性成分。[5]但是,在主动微型设备中,常规驱动技术存在一些显着的局限性。例如,形状内存合金的响应时间相对较慢,并且使用高转换温度激活,这可能会损害流体样品,从而阻碍其在生物应用中的使用。[6]使用压电和静电代理的使用导致了微型电视和使用微加工和光刻技术的简单结构等微型发言。[7]但是,所使用的材料基于刚性硅,这可能不是单次使用,一次性和屈曲loc的首选材料。介电弹性体执行器需要高达数千伏的电压以实现合理的致动,但是,所涉及的高电压可能会改变样品的性能。这些特征限制了完全一次性的高级微流体系统的可能性。[8]基于聚二甲基硅氧烷(PDMS)的LOC中使用的气阀是一种控制液体流量的简单,最优雅的解决方案,但是,它们需要其他外部设备来控制驱动。[9]此外,大多数常规执行器都依赖于组件的混合整体,这些组件既复杂又需要一些特殊的制造设施,以损害成本效率。因此,至关重要的是,使用简单的机制来开发易于制造的执行器,以对LOC进行按需控制,该机制可能有效地制造。在过去的几十年中,导电聚合物已成为各种应用中的感测和致动材料,例如细胞生物学,微电力学系统