Empower 的下一代液冷放大器旨在领先于日益复杂的信号环境。嵌入式固件、软件和实时处理/控制的组合可在任何应用中实现最大的灵活性和操作性。这种单一架构能够实现用户可选择的多模式操作,并可动态配置。CW 放大器提供与我们的脉冲放大器相同的脉冲性能,且不受占空比限制,脉冲放大器允许在低于额定峰值功率 7dB 的情况下进行 CW 操作。
的增加而降低 , 当冷却水流量增至恰好实现热量匹配流量的 1.5、2.7、3.8 倍时 ,COP 分别下降 39.0%、60.1%、69.2%。
与加热部件表面的电阻加热不同,感应加热是在部件内部加热。加热深度取决于使用的频率。高频 (50 kHz) 加热更靠近表面,而低频 (60 Hz) 则深入部件内部。这样可以更有效地加热较厚的部件。感应线圈不会加热(因为工件会加热),因为导体对于所承载的电流来说很大。ProHeat 35 系统由电源、感应毯和相关电缆组成;具有内置温度控制,可进行手动或基于温度的编程。风冷系统仅用于预热;适用于高达 400 华氏度 (204 摄氏度) 的应用。液冷系统用于高温预热、应力消除和氢气烘烤,最高温度可达 1,450 华氏度(788 摄氏度),并且可与可选的数字记录器一起用于关键应用。
网络拓扑极大地影响了第五代地区供暖和冷却(5GDHC)系统的经济和环境绩效。在这项研究中,探索了一个具有废热恢复的5GDHC网络拓扑的环境和经济性能之间的最佳权衡。使用生命周期评估方法来计算与各种网络拓扑的安装和操作相关的总生命周期2排放(LCCO2)。分析了来自数据中心冷却系统的十二个月的经验数据,以评估其对整合到5GDHC系统中的适用性。根据环境环的设定点,废热温度和地区能量系统配置选择了最适合利用这种废热的方法。使用多目标优化算法来选择5GDHC网络拓扑,该拓扑提供了LCCO2和生命周期成本(LCC)之间的最佳权衡。使用权衡参数来权衡选择过程中每个目标的重要性。结果表明,由于其可用性和一致的温度曲线,数据中心的废热适用于5GDHC系统。当液冷系统可获得25℃或更高的回流温度时,发现周围环温管的直接预热是最有效的废热整合方法。最佳权衡拓扑产生的相对于相应的LCC增加而产生的次级LCCO2减少。选择了LCCO2和LCC(最佳权衡拓扑)之间提供最佳权衡的网络拓扑,高度依赖于燃油价格,CO2价格,电力CO 2排放因素,废物的可用性,体现CO 2排放均与网络安装和网络基础结构成本相关的因素。LCCO2降低到LCC的比率从5.78降低到117.79,CO 2偏移成本从4.77到60.08($/TCO 2 E)。
过去十年,对数据中心和网络服务的需求迅速增长。然而,由于更高效的电子硬件、向超大规模和云数据中心的迁移以及更高效的冷却基础设施等,近年来电力需求已经趋于稳定。本文对冷却技术进行了关键概述并讨论了研究差距。数据通信设施中的冷却技术大致可分为风冷和液冷系统。架空/地板下送风、热/冷通道布局和热/冷通道遏制是优化风冷系统性能的主要策略。架空地板架构已在数据通信设施中得到广泛采用,但存在大量气流泄漏(约 25-50%)。研究发现,最佳通风系统是硬地板设计,采用架空冷风输送和热风回风管道,而不是基于房间的送风和回风。冷通道遏制可以更好地降低机架的最高入口温度并抑制冷却系统故障时的温升,而热通道遏制可以提供更低的机架平均入口温度和更小的标准差,并且受服务器周围气密性的影响更小。随着机架功率密度超过 10 kW/机架且热流超过 100 kW/cm 2 ,传统的风冷系统不再是可行的热管理解决方案。喷雾冷却、冲击射流、浸没冷却、液冷微通道和热管等液体冷却方法是克服风冷系统容量限制的新兴技术之一。对于浸没冷却,过渡到过冷两相流沸腾、通过添加微结构或不规则性来创造更多的成核位点和更大的传热表面积来增强传热以及利用纳米流体是受到学者关注的突出增强策略。将电力电子模块浸入液体中可使热阻降低至空气冷却系统的 25%,或微通道或喷雾冷却等液体冷却系统的 30-50%。根据现有的冷却系统、总体热负荷和热点,热管系统可以作为独立单元或与空气冷却系统结合使用,即所谓的混合系统,为数据中心提供服务。与典型的空气冷却系统相比,混合系统可以分别降低 37-58% 和 20-70% 的年度冷却负荷系数和能耗。