摘要 - 自主车轮加载器的控制设计需要高实现和低阶动力学模型。降低订单的目的是减少模型中的状态数量,同时保持与原始模型相当的表现。在车轮装载机中的所有功率组件中,由于其非线性和僵硬的动力学性质,转向和工作液压系统的模型订单降低最多。本文描述了一种物理启发的模型订购方法,该方法可以将模型顺序降低近30%。这是通过将快速动态的订单丢弃并将多个状态巩固到较少的新状态中来实现的。此方法也可以扩展到其他类型的越野车,例如挖掘机,推土机等。所提出的方法的模型顺序降低了近30%。仿真结果表明,在车轮装载机的典型操作条件下,还原阶模型表现出与全阶模型非常相似的性能,输出误差小于6%。
液压系统如今广泛应用于工业设备和工作机械。其毋庸置疑的优势包括:可通过紧凑的执行器设计获得较高的力或扭矩、可在各种环境条件下工作、经久耐用且可靠,并且防火安全性高。另一方面,与工作流体流动相关的现象,例如湍流、流体动力、喷射角偏差、介质状态变化、边界层的形成、空化等,很难用传统的数学模型来描述。此外,在液压系统控制领域,存在许多与非线性相关的问题,例如死区、滞后或饱和。一开始,对 Scopus 和 Web of Science (WoS) 数据库中索引的出版物进行了分析 [1,2]。搜索了以下短语:“artificial AND intelligence AND hydro”,与所有现有主题领域的文章、会议论文、会议评论、评论和书籍章节相关。首先,出版年份的界限设定在 2013 年至 2023 年之间。截至 2022 年特定年份的出版物数量如图 1 所示。在 2023 年的前五周,Scopus 索引了该领域的 18 份出版物,WoS 索引了 6 份。
人工智能(AI)的首次定义是由其父辈明斯基和麦卡锡提出的,他们认为人工智能是任何现在由机器完成、以前由人类完成的活动。研究员 Francois Chollet 表示,人工智能与系统在新的环境中适应和改进的能力有关,能够概括其知识并将其应用于未知场景。智能是获得新技能以解决非特定任务的效率。智能通常被认为是人类的能力,或者在人工智能的情况下是机器学习的能力,但我们实际上讨论的是学习新事物的效率。据专家 Lynne Parker 称,人工智能基本上是一个总称,涵盖了由适当软件(如机器学习、自然语言处理或机器人技术)制作的一系列方法、算法和技术。由于工业已经进入人工智能时代,液压技术也不能置身事外。即使智能液压技术的定义仍在讨论中,但人们已经接受,在任何变体中,都要确保诸如可编程块的存在、机器与外界通信的系统、适合用途的硬件、诊断能力等特性。智能水平因机器而异,基本上由设备的控制、命令、监控和器官学水平决定。汽车越快、越精确、对特定条件的自适应能力越强,汽车就越智能。显然,所需和接受的智能水平也在不断提高,也就是说,除了驱动和采集设备的发展外,存储、传输和处理数据的能力也将显著提高 [1]。智能产品由一系列基本特征定义,通常被编码并分为静态和被动或动态和主动。当工业 4.0 的概念开始在实体经济中得到更频繁的使用时,它被转换为通过独特代码(例如序列号)对产品(较小的里程碑,尤其是被动里程碑)进行识别,根据数字化水平,序列号会附加一定数量的信息。即使人工智能的引入经历了激烈的发展,操作员的角色也不会消失,但他的活动将现代化并适应新技术。向基于智能技术的生产的转变使得制造阶段被接管并以数字方式记录,这本质上有助于简化设备和系统的组装和维护。
摘要。在全球化时代,人们在世界各地之间不断旅行,航空运输是最重要的交通工具之一。今天,它也是最安全的交通方式之一。尽管如此,不断提高安全水平并减少事故的绝对数量及其受害者至关重要。这个想法是本文主题创建的开始,同时也是进一步提高安全性的尝试。飞行员和乘客的安全在空中运行中起着至关重要的作用。最重要的因素之一是飞机的可靠性。可靠性工作的主要目标是估计产品在特定时间段后仍能运行的单位百分比。为了能够做出这样的陈述,有必要选择一个概率分布,以促进构建人们希望做出的合理精确的概率陈述。在这种分析中,故障间隔时间被用作得出所选示例中飞机可靠性结论的主要变量。
摘要。在全球化时代,人们在世界各地之间不断旅行,航空运输是最重要的交通工具之一。如今,它也是最安全的交通方式之一。尽管如此,不断提高安全水平并减少事故绝对数量及其受害者至关重要。这个想法是本文主题创建的开始,同时也是进一步提高安全性的尝试。飞行员和乘客的安全在空中运行中起着至关重要的作用。最重要的因素之一是飞机的可靠性。可靠性工作的主要目标是估计产品在特定时间后仍能正常运行的单位百分比。为了能够做出这样的陈述,必须选择一个概率分布,以便于构建人们希望做出的合理精确的概率陈述。在本分析中,故障间隔时间被用作得出所选示例中飞机可靠性结论的主要变量。
在本论文中,我们研究了节能液压系统。研究重点是移动应用中的线性执行器解决方案,重点是建筑机械。除了能源效率方面,本论文还涉及建筑机械开发中液压系统设计中存在的相互竞争的方面。我们开发了针对不同概念的仿真模型和控件,并考虑了整个机器。根据这项工作,我们开发了几个概念验证演示器。本论文涵盖了三种主要系统拓扑:首先,研究泵控制系统,并构想了一种基于开路泵配置的新概念。特别考虑了多模式功能,以扩大操作范围并有可能缩小组件尺寸。我们开发了仿真模型和控件,并在轮式装载机应用中对系统进行了实验验证。其次,研究了阀控系统中的能量回收可能性。在此类解决方案中,在节流口添加液压马达,用于在负载降低和多功能操作期间回收能量。回收的能量要么暂时使用,要么存储在液压蓄能器中。所提出的解决方案意味着对传统系统的逐步改进,这有时对机器制造商很有吸引力,因为可靠性、安全性和开发方面的不确定性较少
本论文研究了节能液压系统。研究重点是移动应用中的线性执行器解决方案,重点是建筑机械。除了能源效率方面,本论文还涉及建筑机械开发中液压系统设计中存在的相互竞争的方面。开发了针对不同概念的仿真模型和控件,并考虑了整个机器。根据这项工作,开发了几个概念验证演示器。本论文涵盖了三种主要系统拓扑:首先,研究泵控制系统,并构想了一种基于开路泵配置的新概念。特别考虑了多模式功能,以扩大操作范围并可能缩小组件尺寸。开发了仿真模型和控件,并在轮式装载机应用中对系统进行了实验验证。其次,研究了阀控系统中的能量回收可能性。在此类解决方案中,在节流口添加一个液压马达,用于在负载降低和多功能操作期间进行能量回收。回收的能量要么暂时使用,要么储存在液压蓄能器中。所提出的解决方案意味着对传统系统的逐步改进,由于可靠性、安全性和开发成本方面的不确定性较少,这有时对机器制造商很有吸引力。在概念层面上研究了能量回收系统,提出了几种替代系统,并选择了基于双机液压变压器的概念,进行更深入的控制研究,然后进行实验验证。第三,考虑所谓的共压轨系统。这种技术对于旋转驱动器来说已经很成熟,至少在工业领域是如此。然而,在将这种技术应用于移动液压系统时,需要线性执行器的可行解决方案。本文提出了两种解决这个问题的方法。第一种方法侧重于液压变压器,第二种方法侧重于二次控制的多腔气缸。
图 1.1 骨骼肌组织的机械结构............................................................................................. 4 图 1.2 液压假肢手指 [27] ............................................................................................. 8 图 1.3 液压假手的功能模式 [28] ............................................................................. 9 图 1.4 左侧 BLEEX [29] 和右侧 HULC [32]............................................................................. 10 图 1.5 Raytheon Sacros 的 XOS2 [35] ............................................................................................. 11 图 1.6 老一代 ATLAS,当前一代ATLAS、BigDog、WildCat 和 AlphaDog(从左到右)[36] ........................................................................................................................................... 12 图 2.1 有效体积模量与压力和夹带空气的关系 ............................................................................................. 17 图 2.2 密封横截面 ............................................................................................................................. 19 图 2.3 Stribeck 弹性流体动力润滑模型 ............................................................................. 21 图 2.4 七种孔径下内部光滑孔流动时单位长度压降与流速的关系 ............................................................................................................. 24 图 2.5 压降常数。
液压缸简介 ............................4 - 5 RC 系列,单作用,通用气缸 ...................................6 - 9 A、CAT、JBI、RB、RE 系列、气缸配件 ........10 RA 系列,铝制气缸,简介 ...........11 RAC 系列,单作用,铝制气缸 .......。。。。。。。。。。。。。。。。。。。。。。。。..........12 - 13 RACL 系列,单作用,铝制锁紧螺母气缸 ..........................14 - 15 RACH 系列,单作用,铝制空心柱塞缸 .........。。。。。。。。16 - 17 RAR 系列,双作用,铝制气缸 .........................................18 - 19 CLP 系列,单作用,扁平锁紧螺母气缸 .......。。。。。。。。。。。。。。。。。。。。。。20 - 21 RSM,RCS 系列,单作用,低高度气缸 ..........................................22 - 23 BRC、BRP 系列、单作用、拉式气缸 ......。。。。。。。。。。。。。。。。。。。。。。。。.......................24 - 25 RCH 系列,单作用,空心柱塞气缸。。。。。。。。。。。。。.....................26 - 27 RRH 系列,双作用,空心柱塞气缸 ..。。。。。。。。。。。。。。。。。。。。。。。。.......28 - 29 BRD 系列,双作用,精密生产气缸 .......................30 - 31 RR 系列,双作用,长行程气缸 .............。。。。。。。。。。。。。。。。。。。。。。。。32 - 35 CLSG 系列,单作用,高吨位气缸 ....................................36 - 39 CLS 系列,单作用,高吨位气缸 ..........。。。。。。。。。..................40 - 43 CLRG 系列,双作用,高吨位气缸 ......。。。。。。。。。。。。。。。。。。。。。。。。......44 - 47 CLL 系列,单作用,锁紧螺母气缸 ....48 - 51 JH,JHA 系列,铝制和钢制千斤顶 ..............52 GBJ 系列,钢制千斤顶 ..................................53 PR 系列,POW’R-RISER ® 起重千斤顶 ..............54 - 55 极端环境产品 ..........................56 - 57 SC 系列,气缸泵组 ............。。。。。。。。。。。。。58 - 59
背景。V-22 鱼鹰联合先进垂直飞机(简称 V-22)是一种倾转旋翼垂直起降飞机,其开发旨在满足多军种作战需求。V-22 设计融合了复合材料、数字航空电子设备、电传操纵控制和生存能力等先进技术。它以直升机的形式起飞和降落,升空后可转换为涡轮螺旋桨飞机进行远程飞行。这种转换能力是通过倾斜或旋转安装在每侧机翼末端的发动机舱来实现的。每个发动机舱都配备有发动机和变速箱,可驱动直径为 38 英尺的旋翼。V-22 液压系统由三个独立的子系统组成,为 V-22 旋翼系统控制和控制面提供液压动力。