间歇性可再生能源占比高会导致频率波动,从而危及电网的持续运行。液态空气储能 (LAES) 是一种新兴技术,它不仅有助于能源部门脱碳,还具有提供可靠辅助服务的潜力。本文使用混合 LAES、风力涡轮机 (WT) 和电池储能系统 (BESS) 来研究它们在快速频率控制中的贡献。惯性控制、下垂控制和组合惯性和下垂项应用于混合可再生能源系统的每个源,并进行全面分析以研究它们对频率最低点改善的影响。分析表明,具有组合惯性和下垂控制项的 LAES 以及 WT 和 BESS 的惯性控制可提供可靠的频率控制。为了进一步改善频率最低点,提出了一种模糊控制并将其应用于 LAES。所提出的控制系统提供了更适应干扰的性能。此外,还进行了实验测试,以使用实时硬件在环测试台验证所提出的控制方法。模拟和实验结果表明,当实施可变增益控制方案时,混合可再生能源系统中的 LAES 可以显著有助于频率控制。
本文讨论了储能问题。这一重要问题与可再生能源的持续转型有关。液态空气储能 (LAES) 是一种适用于大规模储能的机械储能技术。本文介绍了一种通过将 LAES 与跨临界二氧化碳循环相结合来提高其效率的方法。为此,本文对两个 Kapitza LAES 系统与跨临界 CO 2 循环进行了数值分析:并联和后续模式。在这两种情况下,最大化 CO 2 压力都有助于提高整体效率。将余热引导至 CO 2 循环才是有利可图的。相反,在膨胀前降低空气温度以期为 CO 2 循环提供更多热量实际上会产生更糟糕的结果。并联系统实施可以将存储效率提高 5-6%,具体取决于其他因素。相比之下,后续系统只能将存储效率提高约 3.5%-5%。
随着可再生能源在能源系统中的使用越来越多,由于太阳能和风能等能源的间歇性,电网稳定性成为一个主要问题。为了弥补可再生能源的不稳定,存储技术已被视为有效的方法。液态空气储能 (LAES) 因其固有优势而受到广泛关注:不受地理限制和能量密度高。本文对存储容量为 10 MW / 80 MWh 的 LAES 系统进行了技术经济分析。根据净现值 (NPV) 和回收期对 LAES 的三种不同布局进行了评估和比较。经济结果表明,采用 2 级压缩机和 3 级膨胀机的 LAES 系统(案例 1)的净现值最大,为 91810 万美元,比采用 4 级压缩机和 4 级膨胀机且不带(案例 2)/带(案例 3)附加有机朗肯循环 (ORC) 的系统高出 33.7% 和 10.7%。此外,案例 1 的投资回收期最短,为 6.2 年,而案例 2 和 3 的投资回收期分别为 6.9 年和 6.4 年。这意味着案例 1 是所研究的 LAES 系统最有利可图的布局。
与刚性印刷电路板 (PCB) 和柔性 PCB 相比,软电路具有更高的稳健性和更好的机械阻抗匹配性,可与更广泛的宿主表面(包括纺织品和人体软组织)匹配。然而,可拉伸电子产品开发中的一个关键挑战是使用可印刷油墨的能力,这种油墨在 > 100% 的大应变下仍能保持高电导率和稳定的走线电阻。一种有前途的方法来创建具有低机电耦合的柔软、可拉伸和可印刷电子产品,就是将微流体通道或液态金属 (LM) 液滴整合到软弹性体中。[8,9] 镓基 LM,例如共晶镓铟 (EGaIn),因其高导电性、低流体粘度和可忽略不计的毒性而特别受欢迎。[10] 然而,制造带有 LM 导体的电路通常需要大量劳动力,并且需要许多手动步骤。由于 LM 的粘度低、表面张力高且与基板的粘附性差,直接打印 LM 也具有挑战性。因此,研究人员试图提出创新技术,以打印基于 LM 的电路。在一项研究中,EGaIn 沉积在印刷的 Ag 纳米墨水上,以实现电导率提高 6 个数量级、应变耐受极限提高 20 倍以上。[11] EGaIn 还用于选择性润湿光刻图案化的铜 (Cu) 走线,以创建高性能集成电路 [12],并且还沉积在电纺弹性纤维垫上,以获得具有高导电性和可拉伸性的薄膜导体。[13] 在另一项最近的研究中,LM 和银薄片悬浮在热塑性弹性体中,并用于具有极高拉伸性 (2500%) 的摩擦电纳米发电机。 [14] 其他努力包括利用 EGaIn 液滴渗透网络,无论是印刷迹线的形式 [15,16,17] 还是由悬浮在弹性体基质中的 LM 液滴组成的橡胶复合材料。[18,19,20] 然而,这些使用 LM 液滴印刷软电子器件的方法需要额外的热、光学或机械烧结步骤,以及其他形式的后处理以诱导电导率,并且印刷适性对于与微电子集成的应用受到限制
开发先进的下一代 LA 电解器以克服上述限制的关键研发机会包括:开发新材料、改进组件界面以及设计新型电池和堆栈。需要进行更多基础诊断研究,以将性能与材料和界面特性关联起来并了解降解机制。此类研究将为新型电池和堆栈组件的材料开发工作提供参考。隔膜和催化剂尤其被强调为历史上未得到充分开发的材料,具有巨大的进步机会。材料的表征和测试应在相关操作条件下使用标准化协议进行,包括下一代 LA 系统预期的操作条件(例如间歇操作、
b'在全球范围内,可再生能源发电的利用受到电网中可存储能源的数量和持续时间的限制。这是实现深度脱碳电网的主要瓶颈,深度脱碳电网不仅要使可再生能源的渗透率超过 80%,而且对于长期遏制全球变暖和实现气候目标也是必要的。这个问题可以通过部署长时储能来解决,长时储能本质上是指可以长时间存储能源的系统。PTR 认为放电时间超过 8 小时的系统就是 LDES。在这篇介绍性文章中,我们将讨论有前景的 LDES 技术,包括抽水蓄能、液态空气储能、压缩空气储能、飞轮储能、热能储能、氢能储能和电池储能。'
摘要 - 最近的空间开发正在实施几种简单,更便宜的火箭技术。环境问题和政府限制后需要用绿色的推进剂来代替目前的(基于氢津)的有毒推进剂,而绩效的损失最少。过氧化氢是绿色推进剂未来的有前途的候选者,因为其柔韧性和良性性质可以提高简单,成本效益和环保的推进,并具有足够的性能,以替代丝津或其他高性能的有毒螺旋桨。因此,该论文专门用于研究基于过氧化氢的推进剂,以用于未来的太空推进应用。这项工作的主要目的是研究绿色推进剂的燃烧性能。首先,我们讨论了使用NASA CEA代码研究了过氧化氢的使用,空间推进的特性和管理氢的特性和管理的各种组合和过氧化氢的组合物。主要目的是在不同的O/F比为2,4,6,8,10的燃烧温度和特定的脉冲值,以及20、25和30 bar的各种压力室值。为此,已经考虑了两种情况来研究液态甲烷的BI推进剂,并在不同的O/F比和室,喉咙和出口时获得了质量分数变化。分析已经考虑了BI推进剂的所有组成和燃烧产物的比较,以便在适当的O/F比和固定腔室压力下实现最佳效率。可以观察到,过氧化氢的浓度对燃烧性能和由于重量浓度而产生的化学成分作用具有显着影响。得出的结论是,过氧化氢对于研究活动的未来发展很有用。索引术语 - 绿色推进剂;过氧化氢;双胶质剂;液态甲烷;太空推进; CEA分析
完整作者列表: Shah, Najam Ul Hassan;亚利桑那州立大学,物质、运输和能源工程学院;塔克西拉工程技术大学,机械工程系 Kong, Wilson;亚利桑那州立大学,物质、运输和能源工程学院 Casey, Nathan;亚利桑那州立大学,物质、运输和能源工程学院 Kanetkar, Shreyas;亚利桑那州立大学,物质、运输和能源工程学院 Wang, Robert;亚利桑那州立大学,物质、运输和能源工程学院 Rykaczewski, Konrad;亚利桑那州立大学,物质、运输和能源工程学院