JWST最近测量了K2-18b的传输频谱,K2-18b是一种可居住区的近后末期,检测到其大气中的CH 4和CO 2。发现论文认为,数据最好用可居住的“ Hycean”世界来解释,该世界由相对较薄的h 2域中的大气层组成,上面覆盖了液态水海洋。在这里,我们使用光化学和气候模型将K2-18B模拟为Hycean Planet,又是富含气体的迷你新闻,没有确定的表面。我们发现,在这种大气中,光化学仅在<1零售价<1零售价<1个零食的CH 4中很难与JWST观察结果相吻合,而数据表明大约有1%的气体存在。在Hycean K2-18B上维持%-Level Ch 4可能需要存在甲烷生物圈,类似于地球上的微生物寿命,即30亿年前。另一方面,我们预测具有100×太阳金属性的富含气体的微型纽蛋白应具有4%CH 4和接近0.1%CO 2,这与JWST数据兼容。CH 4和CO 2在深层大气中热化产生,并将其混合至对传输光谱敏感的低压。该模型预测H 2 O,NH 3和CO丰度与非检测广泛一致。鉴于由于H 2的逃脱和深度的潜在超临界性,在Hycean World上保持稳定的温带气候的额外障碍,由于其相对简单性,我们赞成微型新闻的解释,并且因为它不需要生物圈或其他未知来源来解释数据。
目的 - 该项目评估了使用液体氢(LH2)和燃料电池为空中客车A320的高级飞机要求(TLAR)设计的客机的可行性,以实现“零排放”。方法论 - 对喷气机和螺旋桨飞机的现有初步尺寸工具(CS-25)进行了修改,包括所有用于LH2存储和燃料电池整合的元素,包括电动机和热交换器。当前和可能的未来技术参数是根据文献综述确定的。发现 - 第一个参考飞机是A320的重新设计。第二个参考飞行器是A320的涡轮螺旋桨飞机,其巡航手算仅为0.65。涡轮螺旋桨发行的燃油质量和直接运营成本(DOC)分别仅为66.1%和86.5%。与A320重新设计有关,燃料电池飞机具有燃料能量,并且根据当前技术参数,燃料电池能量较高140%和221%。如果考虑合理的未来技术参数,相同的值为74%和146%。这些结果表明,燃料电池乘客飞机对当前技术是不可行的,并且对未来的技术仍然不可能。水排放既不能通过飞行中的储水,也不能通过以冰块形式的飞行中丢弃水。研究局限性 - 需要进一步研究进入大气的液态水排放的影响,但根据最近的出版物,似乎并没有产生重大影响。独创性 - 看来,到目前为止,没有公开可用的氢气飞机的初步飞机尺寸工具。实用含义 - 燃料电池客机的新初步尺寸工具可提供,可用于进一步研究。社会影响 - 到目前为止,大型燃料电池客机被视为解决航空环境问题的可能解决方案。现在可以由公众讨论氢 - 电飞机的一般可行性,能源需求,环境和经济影响。
直到今天,北欧和中欧国家住宅建筑的空间供热需求仍然主要由化石燃料(主要是天然气和石油)的燃烧来满足。因此,该部门在这些国家每年的能源相关二氧化碳排放量中占了很大一部分。可再生能源在供热部门渗透率低的一个原因是,最大的供热需求发生在冬季,而可再生能源的高生产率通常发生在夏季。为了克服这种季节性差异,本文提出了一种基于氢氧化钙转化为氧化钙和水的热化学反应的新型长期储存系统。该概念的基本思想是在夏季使用多余的电力(例如来自屋顶光伏系统的电力)来驱动吸热充电反应。然后可以将带电材料储存在环境温度下的简单容器中,并且可以无限期地保持化学势而不会损失能量。在冬季,通过进行放热逆反应释放的热能可满足建筑物的供热需求。与迄今为止分析过的季节性储存反应系统不同,该系统排放的是液态水而不是水蒸气,这在技术和能源上都增强了排放过程。此外,使用电能而不是太阳能进行充电,可以灵活调整储存的运行时间。这样,系统就可以运行,这样在充电过程中必然产生的废热就可以完全用于满足夏季的生活热水生产。这种新发现的工作原理可以显著提高系统的存储效率。对能量平衡的详细分析,结合第一个与建筑物集成的案例研究,表明潜在的存储效率可以达到 96%。简而言之,本文提出了一种全新的技术概念,通过具有成本效益的长期能源存储将电力和热力部门结合起来,并评估了其在住宅建筑中的应用潜力。
orcaa:一个模拟欧罗巴冷冻ob派任务到阿克尼亚克州朱诺冰菲尔德。E. Lesage 1(Elodie.lesage@jpl.nasa.gov),S。M。Howell 1,S。Campbell2,3,J。Mikucki4,M。Smith1,D。Winebrenner5,T.A.Cwik 1,J。Burnett1,J。Burnett5,B。B。 品牌5,B。Hockman1,M。Pickett5,K。Tighe1,J。Clance4,R。Clavette2,S。Haq1,J。Holmes2,3,J。Shaffer4。 1缅因州2号加利福尼亚理工大学的喷气推进实验室,田纳西大学4朱诺冰菲尔德研究计划3号,诺克斯维尔大学4号,华盛顿大学5号大学应用物理实验室。 简介:对欧罗巴和其他海洋世界的未来探索可能涉及使用自主熔体探针(称为冷冻机器人)的直接原位访问和冰壳和地下液态水的特征[1,2,3]。 海洋世界侦察和天体类似物(ORCAA)项目的侦察和表征是一项多机构的努力,通过NASA的行星科学技术和通过模拟研究(PSTAR)计划资助。 ORCAA旨在通过行星地下探索技术来提高我们对地球上冰圈环境的理解,同时设想为未来的ICY地下访问任务提供科学操作。 我们的整体目标包括陆地冷冻射手通过两个野外活动来展示冰山下湖的通道。 我们计划采样和分析冰川井眼融化和冰川下水,以了解冰冷的宜居环境的演变及其居住的寿命。 1)。E. Lesage 1(Elodie.lesage@jpl.nasa.gov),S。M。Howell 1,S。Campbell2,3,J。Mikucki4,M。Smith1,D。Winebrenner5,T.A.Cwik 1,J。Burnett1,J。Burnett5,B。B。品牌5,B。Hockman1,M。Pickett5,K。Tighe1,J。Clance4,R。Clavette2,S。Haq1,J。Holmes2,3,J。Shaffer4。1缅因州2号加利福尼亚理工大学的喷气推进实验室,田纳西大学4朱诺冰菲尔德研究计划3号,诺克斯维尔大学4号,华盛顿大学5号大学应用物理实验室。简介:对欧罗巴和其他海洋世界的未来探索可能涉及使用自主熔体探针(称为冷冻机器人)的直接原位访问和冰壳和地下液态水的特征[1,2,3]。海洋世界侦察和天体类似物(ORCAA)项目的侦察和表征是一项多机构的努力,通过NASA的行星科学技术和通过模拟研究(PSTAR)计划资助。ORCAA旨在通过行星地下探索技术来提高我们对地球上冰圈环境的理解,同时设想为未来的ICY地下访问任务提供科学操作。我们的整体目标包括陆地冷冻射手通过两个野外活动来展示冰山下湖的通道。我们计划采样和分析冰川井眼融化和冰川下水,以了解冰冷的宜居环境的演变及其居住的寿命。1)。通过这项工作,我们还旨在阐明可以允许营养迁移的水文连通性的重要性,并在行星冰壳中建立宜居或居住的壁ni。统一这些科学和技术演示目标,我们将通过与一个远程行星科学团队在欧罗巴的地下访问科学任务中模拟命令周期来演示科学的操作概念(CONOPS)。虽然没有陆地冰川是欧罗巴的完美物理,化学或生物类似物,但朱诺冰菲尔德提供了多样化的冰川系统,可以在其中研究冰川微生物组,水文和概念操作,围绕熔体探针部署和样品处理(图
摘要:Eddy协方差(EC)空气 - SEA CO 2频率测量已为大型研究船开发,但尚未针对较小的平台进行证明。我们的目标是设计和构建一个完整的EC CO 2型号软件包,适合在浮标上无人看管的操作。已发表的最先进的技术对研究容器有效,例如气流干燥和液态水排斥,适用于有限的功率有限的2-M铁饼浮标。使用现成的(“股票”)气体分析仪(EC155,Campbell Scientifucifuc,Inc。)和原型气体分析仪(“ Proto”)测量快速响应atso-spheric CO 2的浓度,并使用降低的运动诱导的误差(与仪器制造商合作)。 该系统于2020年10月在缅因州的新罕布什尔大学(UNH)Air - Sea Interaction浮标进行了18天。 数据证明了系统的整体鲁棒性。 以前在基于船舶的测量结果上使用的实证后技术技术来解决CO 2分析仪的运动灵敏度,通常对库存传感器无效。 原始分析仪明显胜过库存单元,不需要临时校正,但揭示了未来设计中要解决的剩余文物。 描述了减少功率需求并增加无人值守的部署持续时间的其他系统修复。快速响应atso-spheric CO 2的浓度,并使用降低的运动诱导的误差(与仪器制造商合作)。该系统于2020年10月在缅因州的新罕布什尔大学(UNH)Air - Sea Interaction浮标进行了18天。数据证明了系统的整体鲁棒性。以前在基于船舶的测量结果上使用的实证后技术技术来解决CO 2分析仪的运动灵敏度,通常对库存传感器无效。原始分析仪明显胜过库存单元,不需要临时校正,但揭示了未来设计中要解决的剩余文物。描述了减少功率需求并增加无人值守的部署持续时间的其他系统修复。
也称为生物水,结合水,活化的水,通电水,相干水域,有活力的水或六边形水[2]。当非结构化的液态水暴露于化学和/或电磁能源(例如臭氧或过氧化氢与紫外线或磁场)的组合时,水分子的一部分将分解为羟基自由基。基于羟基发电机技术的水处理系统,这是波长为185 nm或较短的紫外灯的组合。除了磁场的强度之外,水的矿物质及其温度影响结构与散装水的比率[3]。许多农业应用受益于结构化水,因为它没有能量毒素。除了增加能量外,它还调节和平衡土壤矿物质,并带来高氧合状态。结构化的水帮助草莓,橘子,芽菜,柠檬和葡萄生长得更快,更健康,早就成熟,产生更多美味的食物,并使其更加新鲜更长(保质期)[4]。一般而言,结构化水会带来以下好处:果实,谷物,蔬菜生产的100%增加;用水量减少60%;化学使用量的100%降低;更好的害虫,霉菌,藻类控制;健康的农作物,鸟类,牛;抵抗极端温度;改善土壤条件;提高风味,质地和保质期。在结构化水方面,华盛顿大学的杰拉尔德·波拉克(Gerald Pollack)教授是一个先驱,因为他定义了第四阶段的水,也称为结构化水。对结构化水的抗氧化特性及其对动物细胞生物活性的影响的研究表明,它有助于正常细胞,同时抑制恶性细胞,这对动物和人类都有好处[5]。可以使用核磁共振光谱(NMR)观察到六边形结构,这是研究期刊上几个科学出版物的主题。植物的产量较高,导致细胞壁的水合增加。因此,结构化水高度适用于农业[6]。由于其高密度与普通水相比,悬浮的微球被排除在悬浮水之外,导致了排除区,该区域已被称为此类。此外,已经观察到,-200 mV的电势在排除区域之外并超出其边界(负排除区)[7]。
地热能(地球的自然热量)的非电气用途均记录了历史。电力于1904年在意大利拉德雷洛(Larderello)首次从地热蒸汽产生,但广泛利用被推迟到第二次世界大战之后。那时,在Larderello获得的经验表明,生产性的井排出了,可用于发电的过热蒸汽。在意大利和其他国家 /地区,对与拉德雷罗类似的地热区进行了探索。发现了一个或两个这样的区域,通常被称为“蒸气主导的系统”(例如,加利福尼亚州的间歇泉,在1920年代覆盖)。水力发电通常仍然可用,化石燃料的成本低,而地热能被认为是不可靠的。在大多数地热区域中,最热的井排出了水和蒸汽的混合物,液态水是主要的流体。这些混合流体系统通常称为热水或水为主系统。钻探到此类系统的井首先被视为故障,但是在1950年代初期,在新西兰获得的经验表明,蒸汽分数可以分开以发电。随后在全球范围内发展得更快,但是最有利的4'蒸气主导地位”的地区。新西兰以新的关注水为主的系统带领世界。地热储层工程很快成为公认的专业,许多技术从石油和天然气场工程和地下水水文学转移。但是,这些新的热流体储层在三个方面与知名类型有显着不同:(1)高温是至关重要的,不是偶然的; (2)在两相的关系中,气体和溶解盐的组成和杂乱在修饰水和蒸汽的特性方面非常重要; (3)地热储层通常涉及比其他类型更多的综合地质。因此,在新西兰开发的水库工程似乎已经避免了过度简化的趋势。新西兰的努力也从一个团队方法中受益匪浅,该方法利用地球科学家和工程师的专业发现,不仅在新西兰,而且在印度尼西亚,印度尼西亚和菲律宾的,发现,消除和生产地热液体。此外,专家之间免费交流信息的自由交换是规则,而不是例外。本书应被视为利用所有地球科学和工程学的重要一步,以获得地热储层工程的协调景观。
摘要:原子神经网络 (ANN) 是一类机器学习方法,用于预测分子和材料的势能面和物理化学性质。尽管取得了许多成功,但开发可解释的 ANN 架构并有效实施现有架构仍然具有挑战性。这需要可靠、通用且开源代码。在这里,我们介绍了一个名为 PiNN 的 Python 库作为实现这一目标的解决方案。在 PiNN 中,我们设计了一种新的可解释且高性能的图卷积神经网络变体 PiNet,并实现了已建立的 Behler-Parrinello 神经网络。使用分离的小分子、结晶材料、液态水和水性碱性电解质的数据集测试了这些实现。PiNN 附带一个名为 PiNNBoard 的可视化工具,用于提取 ANN“学习”到的化学见解。它提供分析应力张量计算,并与原子模拟环境和阿姆斯特丹建模套件的开发版本接口。此外,PiNN 是高度模块化的,这使得它不仅可以用作独立软件包,还可以用作开发和实现新型 ANN 的工具链。代码在宽松的 BSD 许可下分发,可在 https://github.com/Teoroo-CMC/PiNN/ 免费访问,其中包含完整的文档和教程。■ 简介计算化学的主要任务之一是将分子或材料的结构映射到其属性,即 f : { x ⃗ i , Z i } → P 。当 P 是总能量时,任务就是设计计算方法来找到薛定谔方程的近似解,正如狄拉克在 1929 年的解释 1 中所预见的那样,也是一代又一代计算和理论化学家一直致力于研究的那样。更具挑战性的是做逆向 f : P → { x ⃗ i , Z i },也就是说,提出具有特定价值属性的新结构。为了应对这些挑战,机器学习 (ML) 在计算化学和材料发现领域引起了相当大的关注和努力,2 - 4 并且许多不同类型的 ML 方法已成功应用于这些领域。在本文中,我们将重点介绍原子神经网络 (ANN),它在预测物理化学性质、近似势能面 (PES)、5、6 方面非常成功
摘要,由于大气逃离了数十亿年的空间,火星的大气相对于地球的沉重同位素富集。估计这种富集需要对所有大气过程有严格的理解,这些过程有助于逃避过程的下层大气和上层大气之间的同位素比的演变。我们结合了通过大气化学套件在车载上获得的CO垂直谱的测量值,Exomar痕量气臂上的预测和光化学模型的预测,找到了光化学诱导的分馏过程的证据,从而消耗了CO和O的重量(Δ13C = -160 C = -160±90±90±)和±90±)。在上层大气中,考虑到这一过程的逃脱分级因子降低了约25%,这表明C从火星的大气中逃脱了比以前想象的要少。在下部大气中,将这种13个耗尽的CO分馏掺入表面可以支持最近发现的火星有机物的非生物起源。1。主文本1.1简介的地貌和矿物学证据线条表明,液态水曾经在火星的表面1,2上很丰富,但是目前尚不清楚我们今天观察到的是什么气候条件,或者是什么使气候促进了气候过渡到气候过渡到干燥,低压大气的原因。在诸如N和H等几种物种的沉重同位素中富集表明,大气逃生是整个历史上大气的气候和大气组成的重要机制3,4。将测得的大气同位素比与进化模型相结合,可以估计火星早期大气中物种的丰度,这证明了对大气同位素组成5-7的透彻理解的价值。对大气从同位素组成的长期演变的准确估计取决于两个重要数量:过去和现在同位素比的测量以及净逃逸分级因子,这决定了重型 - 同位素富集的效率,这是大气逃避到空间的效率8,9。好奇心流动站对C和O大气中C和O的同位素组成的最准确测量是由好奇心漫游者制作的,这表明CO 2在CO 2中的重量同位素在类似地球的标准中(13 C/ 12 C = 1.046±0.004 VPDB和18 O/ 16 O = 1.046 O/ 16 O = 1.048 o/ 16 O = 1.048±0.0055
近几十年来,随着太赫兹 (THz) 光源的发展,工业和医学应用相继被提出。此外,THz 辐射对人体健康的毒性也引起了在此频率区域工作的研究人员的浓厚兴趣 1 。两个项目,欧洲 THz-BRIDGE 和 SCENIHR 的国际 EMF 项目 2 ,总结了近期有关 THz 辐射对人体影响的研究。例如,THz 波对 DNA 稳定性产生非热影响 3 – 5,这可能导致人类淋巴细胞的染色体畸变 6 。还证明了小鼠皮肤中伤口反应基因的转录激活 7 和人造人体 3D 皮肤组织模型 8 中的 DNA 损伤。大多数研究集中在上皮和角膜细胞系,因为在这个频率区域液态水的强烈吸收下,THz 光子在组织表面被完全吸收。但是,如果将 THz 辐射转换为可以传播到水中的另一种能量流,THz 波的照射可能会对组织内部造成损伤。事实上,THz 光子能量一旦被体表吸收,就会转换为热能和机械能。我们最近观察到 THz 脉冲在液态水表面产生冲击波 9 。产生的冲击波可以传播几毫米深。类似的现象也可能发生在人体上。THz 诱导的冲击波会对生物分子产生机械应力并改变其形态。THz 辐射的这种间接影响尚未被研究过。为了揭示 THz 诱导的冲击波对生物分子的影响,我们重点研究了肌动蛋白的形态。肌动蛋白有两种功能形式,单体球状 (G)-肌动蛋白和聚合丝状 (F)-肌动蛋白。肌动蛋白丝形成复杂的细胞骨架网络,在细胞形状、运动和分裂中起着至关重要的作用 10 。使用肌动蛋白的一个优点是,我们可以很容易地从组织中获得足够的纯化 G- 肌动蛋白 11 ,以重建体外聚合反应。肌动蛋白丝可以通过用硅-罗丹明 (SiR)-肌动蛋白染色直接在荧光显微镜下观察 12 。由于肌动蛋白在正常和病理细胞功能中起着关键作用,包括转录调控、DNA 修复、癌细胞转移和基因重编程 13 - 16 ,各种化合物和调节蛋白已被分析用于研究和治疗目的 17 。在这项研究中,我们调查了 THz 诱导的冲击波对肌动蛋白丝的影响