生产现场的散装液氧、液氮和液氩储存系统 作为行业标准协调计划的一部分,欧洲工业气体协会 (EIGA) 发布了 EIGA Doc 127《生产现场的散装液氧、液氮和液氩储存系统》。本出版物由国际协调委员会成员联合出版。本出版物旨在作为国际协调出版物,供国际协调委员会所有成员在世界范围内使用和应用,该委员会成员包括亚洲工业气体协会 (AIGA)、压缩气体协会 (CGA)、欧洲工业气体协会 (EIGA) 和日本工业和医用气体协会 (JIMGA)。地区版具有与 EIGA 版相同的技术内容,但是,主要在格式、使用的单位和拼写方面有所编辑变化。地区监管要求适用于欧洲。
4.本标准所述材料的允许应力值基于 ASA B31.3 1959 美国压力管道标准 C&,第 3 节,石油炼油厂管道,表 302.3.U。应力值基于 100°F 和 150'F 下的铜管。“他允许&le
摘要 ArianeWorks 是由法国国家空间研究中心和阿丽亚娜集团发起的创新平台,它加速了 Themis 的开发,Themis 是一种由液氧和生物甲烷推动的低成本可重复使用的火箭级演示器,为 2030 年的欧洲发射系列铺平了道路。根据其股东的生态设计愿景,ArianeWorks 在 Themis 计划中启动了生态设计战略的实施。在此背景下,本研究介绍了基于半可重复使用发射器的发射服务的生命周期评估,该发射器源自 Themis 并在圭亚那航天中心运行,该评估发生在 Themis 的早期设计阶段。该分析意味着开发一个特定的框架来解释下级的可重复使用性,需要使用经过调整的功能单元、在生命周期中引入新的阶段以及特定的参数化来描述其复杂性。本文接着进行了敏感性分析,以确定影响的主要驱动因素并支持设计权衡分析,然后估计最大可信缓解潜力。然后,概述了一种评估可重复使用性可能带来的环境效益的方法,并为所研究的发射服务提供了初步结果。影响评估结果证实,结构和推进剂的生产对阿丽亚娜火箭的生命周期影响最大。由于延长寿命阶段会产生额外影响,因此低级火箭的回收和翻新也发挥着重要作用,但也使一些影响减少成为可能,这些影响可以通过明确的惯例来隔离。跨大西洋运输阶段或测试和加油期间的推进剂消耗会造成不可忽略的影响,这些影响可以通过采用节俭的方法或技术创新来减轻。总体而言,该研究强调,与基线相比,对气候变化和资源枯竭的总影响可能减少约 30-80%。然而,尽管人们普遍认为可重复使用性可以减少生命周期影响,但研究表明,实际情况要复杂得多,因为从发射器的环境性能比较中得出的结论取决于惯例、市场参数、运营方案和环境影响类别。对于所研究的发射服务,结果表明,虽然可重复使用性可能会减少对资源枯竭的影响,但它可能会增加对气候变化的影响。此外,可重复使用性的任何环境效益都可能被这项技术所促进的全球太空活动的增长完全抵消,从而导致适得其反的反弹效应。本研究强调,由于采用生态设计方法,影响可能会减少,这将减轻这种影响。关键词:环境影响、生命周期评估、生态设计、发射器、可重复使用性、方法论 首字母缩略词/缩写
• 液氧/甲烷是一种液体推进剂组合,具有多项优势:运载火箭可以更快地获得高度和速度。这是因为液氧/甲烷比其他推进剂具有更高的“比冲”。发射前运载火箭中会留有更多燃料。与精炼石油-1 (RP-1) 和液氢 (LH) 不同,液氧和甲烷可以在相似的温度下以液体形式存在,并混合以增加其爆炸性。燃烧更清洁。液氧/甲烷也比其他一些液体燃烧更清洁
作为全球探索路线图 (GER) 的一部分,国际空间探索协调小组 (ISECG) 组建了两个技术差距评估小组,以评估迄今为止尚未在国际层面开展的学科领域。参与机构包括 ASI、CNES、DLR、ESA、JAXA 和 NASA。因此,ISECG 技术工作组 (TWG) 根据 GER 技术发展图 (GTDM) 中反映的关键技术需求推荐了两个学科领域:防尘和液氧/甲烷推进。液氧/甲烷推进系统通过使用现场推进剂生产显著减少火星上升阶段的着陆质量,从而改善生命支持、动力和推进的通用流体,从而实现多样化冗余,消除腐蚀性和有毒推进剂,从而改善表面操作和可重复使用性,并提高推进系统的性能,从而为未来人类火星任务提供支持。国际团队的目标和目的是确定必须弥补哪些技术差距,才能将液氧/甲烷用于地月、月球和火星任务中的载人探索任务。重点放在近期月球着陆器应用上,并可扩展到火星。每个机构都提供了迄今为止大量液氧/甲烷推进系统开发的状态,以及他们对尚存技术差距的意见。然后讨论这些差距,这些差距现在是合作的机会。
Towards real time monitoring of blood oxygenation in human body through Time Domain Diffuse Correlations Spectroscopy Professor: Prof. Edoardo Charbon Office MC A3.303 e-mail: edoardo.charbon@epfl.ch Lab deputy: Dr. Claudio Bruschini Office MC A3.307 email: claudio.bruschini@epfl.ch Scientific Assistant Contacts: Paul Mos Office MC A3.257电子邮件:paul.mos@epfl.ch项目类型:主项目部分:微工程官方开始日期:任何时间提交最终报告:小组会议上的TBD演示文稿:TBD单光子雪崩二极管(SPAD)摄像机在基于LIDAR的应用程序中广泛使用。弥漫性相关光谱已经用于监测脑血流,并以激光分离为4厘米的光学探针。通过添加时间域,预期较高的信号与噪声比。
安全虽然气体分离设施中有许多区域需要担心安全问题,但主要危险还是在冷箱中。一个有力的例子可以说明可能发生的危险,2019 年 7 月 19 日,中国河南省一家工厂发生爆炸(图 4),造成 15 人死亡,多人受伤,工厂损失惨重。关于爆炸原因的一致意见指出,液氧通过泄漏渗入周围的珍珠岩绝缘层和二次遏制系统。外壳的设计无法承受持续的局部直接低温,它在压力下破裂,释放出液氧,形成富氧环境,导致两次爆炸和火灾。